Clanagiri First SRI ADICHUNCHANAGIRI FIRST GRADE COLLEGE, CHANNARA YARATNA DEPARTMENT OF CHEMISTRY B.Sc. First Semester (NEP)

LESSON PLAN FOR THE SESSION 2022-2023 (Odd Semester)

Name of the Faculty	: Dr. N Shankaresh, Dr. B.N. Chandrashekar, Mrs.Premakumari. Mrs. A.C, Apoorva (Theory and Practical)
Semester	:1 st
Title of the Paper	: CHEMISTRY –I (DSC-1C)
Subject code	: CHEDSCP101
Lesson Plan Duration	: 16 weeks
Total teaching period	: 56 Hrs

Work Load (Lecture/Practical) Per Week (in hours): Lecture - 04, Practical - 04

			Theory		Practical
Part	Week	Lecture	Topic including	Practical	Торіс
		Day	Assignment/Test	Day	
		1	Analytical chemistry Language of analytical chemistry: Definitions of analysis, determination, measurement		Preparation of standard sodium carbonate solution and standardization of
		2	Bohr's theory, its limitations and atomic spectrum of hydrogen atom		hydrochloric acid solution (methyl orange indicator). Estimation of sodium hydroxide
А	1	3	Classification and nomenclature of organic compounds, Hybridization, Shapes of organic molecules,	1	present in the solution using phenolphthalein

57311

annara

/						indicator,
			4	Gaseous State Elementary aspects of kinetic theory of gasses, Ideal and real gasses. Boyle temperature (derivation not required)		100 pt 573114 2
			5	Techniques and methods. Classification of analytical techniques. Choice of an analytical method	2	Determination of carbonate and hydroxide present in a mixture.
	A	2	6	Wave mechanics: de Broglie equation		
			7	Influence of hybridization on bond properties. Nature of bonding in Organic molecules		
6			8	Gaseous State Elementary aspects of kinetic theory of gases, Ideal and real gases. Boyle temperature (derivation not required)		
	A	3	9	Accuracy, precision, sensitivity, selectivity, method validation. Figures of merit of analytical methods and limit of detection (LOD)	3	Determination of oxalic acid and sodium oxalate in a given mixture using standard KMnO4/NaOH
			10	Heisenberg's Uncertainty Principle		solution
			11	Formation of Covalent bond, Types of chemical bonding, localized and delocalized, conjugation and cross conjugation, concept of resonance,		
0			12	calculation of σ and η , variation of viscosity with temperature and pressure.		
	A	4	13	Limit of quantification (LOQ), linear dynamic range (working range).		Estimation of ferrous and ferric iron in a given mixture using
			14	Uncertainty Principle and its significance	e	standard potassium

		15	Electronic displacements: Inductive effect, Electromeric effect, Resonance and Hyper conjugation, cross conjugation explanation with examples. Concept of resonance, aromaticity	4	dichromate solution
		16	Maxwell's Boltzmann distribution law of molecular velocities (Most probable, average and root mean square velocities).		
		17	Errors and treatment of analytical data: Limitations of analytical methods		Preparation of standard oxalic acid solution and standardization of
		18	Wave equation,		potassium permanganate solution.
A	5	19	Huckel rule, anti-aromaticity explanation with examples. Strengths of Organic acid and bases: Comparative study with emphasis on factors effecting pK values.	5	Estimation of hydrogen peroxide present in the solution.
		20	Relation between RMS, average and most probable velocity and average kinetic energies. (Mathematical derivation not required), law of equipartition of energy		
		21	Errors: Determinate and indeterminate errors, absolute error, relative error, minimization of errors		Preparation of standard oxalic acid solution and standardization of potassium
		22	Schrödinger's wave equation,		permanganate solution Estimation of ferrous
A	6	23	Relative strength of aliphatic and aromatic carboxylic acids-Acetic acid and chloroacetic acid, acetic acid and propionic acid, acetic acid and Benzoic acid	6	ammonium sulphate present in the solution
		24	Behaviour of real gases: Deviation from ideal gas behaviour. Compressibility factor (Z) and its variation with pressure for different gases		
		25	Statistical treatment of finite samples - mean, median, range, standard deviatio and variance	n	

_						dianagin First
	A 7	7	26	Significance of ψ and ψ 2	7	Preparation of acetanilide from aniline
			27	Steric effect- Relative stability of trans and cis-2-butene	-	using Zhlacetic acid (Green method).
			28	Causes of deviation from ideal behaviour, vander Waals equation of stat (No derivation) and application in explaining real gas behaviour.		*Channarav SP8
			29	External standard calibration - regression equation (least squares method)		Synthesis of p-nitro acetanilide from acetanilide using
	А	8	30	Quantum numbers and their significance	8	nitrating mixture.
			31	Mechanisms of Organic Reactions Notations used to represent electron movements and directions of reactions- curly arrows, formal charges.		
			32	Critical phenomena - Andrews isotherms of CO2, critical constants and their calculation from van der Waals equation		
			33	Correlation coefficient (R ²). Numerical problems Basic laboratory practices, calibration of glassware.		Bromination of acetanilide
			34	Normalized and orthogonal wave functions	9	•
	А	9	35	Types of bonds breaking- Homolytic and Heterolytic. Types of reagents- Electrophiles, nucleophiles, nucleophilicity and basicity. Types of organic reactions- substitution, addition, elimination,		
			36	Continuity of states, Law of corresponding states. Numerical problems.	-	
			37	(pipette, burette and volumetric flask), Sampling (solids and liquids)		Hydrolysis of methyl m-nitrobenzoate to m-

		20			Chanagiri First
		38	Sign of wave functions, Radial and angular wave functions for hydrogen atom	10	nitrobenzoie acid (Conventional.method) 573116
A	10	39	Rearrangement and pericyclic reactions, explanation with examples. Chemistry of Aliphatic hydrocarbons, Carbon-Carbon Sigma bonds. Chemistry of alkanes: Formation of alkanes, Wurtz reaction, Wurtz-Fittig reaction, Free radical substitution,		China 19
		40	Surface Tension: Definition and its determination using stalagmometer, effect of temperature and solute on surface tension		
		41	Weighing, drying, dissolving, Acid treatment, Rules of work in analytical laboratory		Synthesis of diazoaminobenzene from aniline (conventional method)
A	11	42	Radial and angular distribution curves, Shapes of s, p, d and f orbitals	11	(conventional method)
		43	Halogenation- relative reactivity and selectivity. Carbon-carbon pi bonds Formation of alkenes and alkynes by elimination reaction. Mechanism of E1, E2, E1cb reaction. Saytzeff and Hofmann eliminations		
		44	Viscosity: Definition, Coefficient of viscosity. Determination of viscosity of a liquid using Oswald viscometer. Effect of temperature, size, weight, shape of molecules and intermolecular forces.		
		45	General rule for performing quantitative determinations (volumetric and gravimetric)		Preparation of dibenzalacetone (Green method)
А	12	46	Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations	12	

		1	47	Addition of HBr to propense Free rediced	/	Standgiri First
			77	Addition of HBr to propene, Free radical addition of HBr to propene. Addition of halogens to alkenes-carbocation and halonium ion mechanism. Stereospecificity of halogen addition.		Channaravand
			48	Refraction: Specific and molar refraction- definition and advantages. Determination of refractive index by Abbes Refractometer. Additive and constitutive properties.		
			49	Safety in Chemical laboratory, Rules of fire prevention and accidents, First aid		Practical Test: Part -
-	A	13	50	Electronic configurations of the elements (Z=1-30), effective nuclear charge, shielding/screening effect	13	1
			51	Ozonolysis mechanism - ozonolysis of propene. Addition of hydrogen halides to alkenes, mechanism, regioselectivity and relative rates of addition. Hydrogenation, hydration, hydroxylation and epoxidation of alkenes, explanation with examples, 1,2 and 1,4- addition reactions in conjugated dienes		
			52	Parachor: Definition, Atomic and structure parachor, Elucidation of structure of benzene and benzoquinone.		
			53	Precautions to be taken while handling toxic chemicals, concentrated/fuming acids and organic solvents		Practical Test: Part - 2
	A	14	54	Electronic configurations of the elements (Z=1-30), effective nuclear charge, shielding/screening effect	14	
			55	Diels-Alder reaction, Allylic and benzylic bromination and mechanism in propene, 1-butene, 1-toluene and ethylbenzene.		

		•		DanaBirl First Star
	56	Parachor: Definition, Atomic and structure parachor, Elucidation of structure of benzene and benzoquinone.		No
	57	Revision of syllabus.		Repetition of mars
В	58	Revision of syllabus.		
	59	Revision of syllabus.		
	60	Revision of syllabus.	15	

HOD of Chemistry SAFG College Channarayapatna-573116 Hassan Dist

De jungthener

Principal Sri Adichunchanagiri First Grade Collage Channarayapatna-573 116

SRI ADICHUNCHANAGIRI FIRST GRADE COLLEGE ,CHANNARAVAPATNA DEPARTMENT OF CHEMISTRY B.Sc. Second Semester ((NEP)

LESSON PLAN FOR THE SESSION 2022-2023 (Even Semester)

Name of the Faculty	Dr. N Shankaresha, Dr B N Chandrashekar, Mrs. Premakumari.A.C. Miss. Apoorva (Theory and Practical)
Semester	: 2 nd
Title of the Paper	: CHEMISTRY II (DSC-2)

Subject code : CHEDSC201

Lesson Plan Duration : 16 weeks

Total teaching period : 56 Hrs

Work Load (Lecture/Practical) Per Week (in hours): Lecture - 04, Practical - 04

		Theory		Practical		
Part	Week	Lecture	Topic including	Practical	Topic	
		Day	Assignment/Test	Day		
		1	Analytical Chemistry Titrimetric analysis: Basic principle of titrimetric analysis. Classification, Preparation and dilution of reagents/solutions			
		2	s, p, d and f-block elements,.	1	Determination of density using specific gravity bottle and	
A	1	3	Nucleophilic substitution at saturated carbon		viscosity of liquids using Ostwald's	

		4	Liquid Crystals Explanation, classification with examples- Smetic, nematic, cholesteric, dics shaped and polymeric.		viscometer (Ethyl acetate, Toluene, Chloroform, ⁷³¹ Chlorobenzene or any other nonhazardous liquids)
		. 5	Normality, Molarity and Mole fraction. Use of N1V1= N2V2 formula,		Determination of the density using specific
	-	6	The long form of periodic table.	2 Surface tens liquids using Stalagmome acetate, Tol Chlorobenze	gravity bottle and surface tension of
А	2	7	Mechanism of SN1 reactions with suitable 18 examples		liquids using Stalagmometer (Ethyl acetate, Toluene, Chlorobenzene, any other non-hazardous liquids.
		8	Structures of nematic and cholesteric phases-molecular arrangements in nematic and cholesteric liquid crystals.		
		9	Preparation of ppm level solutions from source materials (salts), conversion factors		Determination of the composition of liquid mixture by refractometry.
А	3	10	Detailed discussion of the following properties of the s-block elements	3	(Toluene & Alcohol, Water & Sucrose)
	-	11	Mechanism of SN2 reactions with suitable 18 examples		
	-	12	Applications of liquid crystals in LCDs and thermal sensing.		
A	4	13	Acid-base titrimetry: Titration curves for strong acid vs strong base, weak acid vs strong base and weak base vs strong acid titrations.	4	Determination of partition/distribution coefficient - i) Acetic acid in water andcyclohexane. ii)
		14	Detailed discussion of the following properties of the p-block elements		Acetic acid in Water and Butanol. iii)
		15	Energy profile diagrams		Benzoic acid in water and toluene
		16	Applications of liquid crystals in LCDs and thermal sensing.		

Fb

		17	Titration curves, Quantitative applications – selecting and standardizing a titrant, inorganic analysis - alkalinity, acidity		Determination of rate		
A	5	18 19	Atomic radii (van der Waals) Stereochemistry and factors effecting SN1 reactions.	5	constant of decomposition of H2O2 catalyzed by FeCl3		
		20	Laws of Crystallography: Law of constancy of interfacial angles, Law of rational indices, Law of symmetry (Symmetry elements),				
		21	Complexometric titrimetry: Indicators for EDTA titrations - theory of metal ion indicators, titration methods employing EDTA		Determination of percentage composition of NaCl		
A	6	6	6	22 23	Ionic and crystal radii.Stereochemistry and factors effectingSN2 reactions.	6	solution by determining miscibility temperature of phenol- water system.
		24	Laws of Crystallography: Law of constancy of interfacial angles, Law of rational indices, Law of symmetry (Symmetry elements),				
A	7	25	direct, back, displacement and indirect determinations, Applicationdetermination of hardness of water	7	Determination of		
		26	Covalent radii		percentage composition of NaCl		
		27	Aromatic Electrophilic substitution reactions		solution by determining miscibility		
		28	Miller indices and its calculation,		temperature of pheno water system.		

	,	20	Redox titrimetry: Balancing redox		Determination of
		29	equations, calculation of the equilibrium constant of redox reactions,	8	dichromates 7311
A	8	30	Ionization enthalpy, successive ionization enthalpies and factors affecting ionization	U	-dannat.
		31	Mechanisms of Electrophilic substitution reactions,		
		32	, X–Ray diffraction by crystals: Bragg's law and derivation of Bragg's equation		
		33	titration curves, Theory of redox indicators, calculation of standard potentials using Nernst equation. Applications.		Determination of oxalic acid using standard potassium permanganate solution
	-	34	Applications of ionization enthalpy	9	
	-	35	σ and π complexes		
A	9	36	Single crystal and powder diffraction methods		
		37	Precipitation titrimetry: Titration curves, titrants and standards, indicators for precipitation titrations	10	Determination of hardness of water Standardized EDTA solution
A	10	38	Electron gain enthalpy, trends of electron gain enthalpy		
	-	39	Halogenation, Nitration,		
		40	Single crystal and powder diffraction methods		
		41	Precipitation titrations involving silver nitrate- Volhard's and Mohr's methods and their differences.		Determination of hardness of water Standardized EDTA solution
A	11	42	Electronegativity, Pauling's/ Mulliken's/ Allred Rachow's/ and Mulliken-Jaffé's		5010001

		43	Halogenation, Nitration	11	No.
		44	Distribution Law Nernst Distribution Law - Statement and its derivation. Distribution constant, factors affecting distribution constant		No
		45	Gravimetric Analysis: Requisites of precipitation, mechanism of precipitation, Factors influencing		
A	12	46	Electronegativity scales. Variation of electronegativity with bond order, partial charge, hybridization, group electronegativity	12	Determination of hardness of water Standardized EDTA solution
		47	Acylation with their mechanism		
		48	validity of Distribution Law, Modification of distribution law when molecules undergo a) Association b) Dissociation		
		49	Precipitation, Co-precipitation, post- precipitation, Advantages of organic reagents over inorganic reagents,		
А	13	50	Activating and deactivating groups. Orientation influence, Ortho-para ratio.	13	Practical Test: Part - 1
		51	Ozonolysis mechanism - ozonolysis of propene. Addition of hydrogen halides to alkenes, mechanism, regioselectivity and relative rates of addition. Hydrogenation, hydration, hydroxylation and epoxidation of alkenes, explanation with examples, 1,2 and 1,4- addition reactions in conjugated dienes		
		52	Application of Distribution Law in Solvent extraction. Derivation for simple and multiple extraction.	-	

		53	Reagents used in gravimetry (8-hydroxy quinoline (oxine) and dimethyl glyoxime (DMG). Numerical problems on all the above aspects.	14	Practical Test: Part -		
Α	14	54	Trends in the chemistry of the compounds of groups 13 to 17 (oxides and halides		2		
				55	Aromatic nucleophilic substitution reaction: SNAr and Benzyne mechanism with suitable examples		
		56	Principles of distribution law in Parkes Process of desilverisation of lead. Numerical Problems.				
		57	Revision of syllabus.		Repetition of experiments		
		58	Revision of syllabus.		experiments		
		59	Revision of syllabus.				
В		60	Revision of syllabus.	15			

HOD of Chemistry SAFG College Channarayapatna-573116 Hassan Dist

Me junathe . D.K Principal

Sri Adichunchanagiri First Grade Collage Channarayapatna-573 116

SRI ADICHUNCHANAGIRI FIRST GRADE COLLEGE ,CHANNARA MAPATNA DEPARTMENT OF CHEMISTRY B.Sc. Third Semester ((NEP)

LESSON PLAN FOR THE SESSION 2022-2023 (Odd Semester)

Name of the Faculty	Dr. N Shankaresh, Dr. B.N. Chandrashekar, Mrs.Premakumari. Mrs. A.C, Apoorva (Theory and Practical)
Semester	:3 rd
Title of the Paper	: CHEMISTRY –III (DSC-3C)
Subject code	: CHEDSCP301
Lesson Plan Duration	: 16 weeks

Total teaching period : 56 Hrs

Work Load (Lecture/Practical) Per Week (in hours): Lecture - 04, Practical - 04

	Week	Theory		Practical		
Part		Lecture Day	Topic including Assignment/Test	Practical Day	Торіс	
		1	Separation methods: Fundamentals of chromatography: General description, definition, terms and parameters used in chromatography, classification of chromatographic methods		Qualitative semi-micro analysis of mixtures containing 2 anions and 2 cations Cations: NH ⁴⁺ , Pb ²⁺ ,	
		2	Structure and Bonding-I: The ionic bond: Structures of ionic solids. Radius ratio rules	1	Bi ³⁺ , Cu ²⁺ , Al ³⁺ , Fe ³⁺ , Co ²⁺ , Cr ³⁺ , Ni ²⁺ , Zn ²⁺ , Mn ²⁺ , Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ,	

FILSE

51

152

A	1	3	Reaction Intermediates: Generation.	13	Mest Na', K' and Lit,
			structure, stability and reactions involving; i. Carbocations: Dienone- phenol and Pinacol-Pinacolone Rearrangement.	a Andrew	Aniions: CO's CH3COO', CI, Br, J NO's, HO's , 5O's
		4	Chemical Kinetics: Introduction, rate of reaction, order and molecularity with examples. Rate constant-definition and explanation.		C ₃ O ₄ ² and PO ₄ ³ , Spot tests and flame tests to be carried out wherever possible,
		5	Criteria for selection of stationary and mobile phase and nature of adsorbents. Principles of paper, thin layer, column chromatography	2	Qualitative semi-micro analysis of mixtures containing 2 anions and 2 cations
А	2	6	Calculation of some limiting radius ratio values, Coordination number 3 (planar triangle)		Cations: NH ⁴ ¹ , Pb ² ¹ , Bi ³ ¹ , Cu ² ¹ , Al ³ ¹ , Fe ³ ¹ , Co ² ¹ , Cr ³ ¹ , Ni ² ¹ , Zn ² ¹ ,
		7	. Carbanions: Perkin Reaction, Aldol condensation, Claisen-Schmitt condensation.		Mn ²⁺ , Ba ³⁺ , Ca ²⁺ , Sr ²⁺ , Mg ²⁺ , Na ⁺ , K ⁺ and Li ⁺ . Anions: CO ₃ ²⁺ ,
		8	Differential and integrated form of rate expressions up to second order reactions, Derivation of expression of rate constant of second order reaction (a=b and a ≠ b),		CH3COO [°] , Cl [°] , Br [°] , l [°] , NO ₃ [°] , BO ₃ ^{°3°} , SO ₄ ^{°2°} , $C_2O_4^{°2°}$ and PO ₄ ^{°3°} . Spot tests and flame tests to be carried out wherever possible.
	-	9	Column efficiency, factors affecting the column efficiency, van Deemter's equation and its modern version.		Qualitative semi-micro analysis of mixtures containing 2 anions and
A	3	10	Calculation of some limiting radius ratio values, Coordination number 3 (planar triangle)	3	2 cations Cations: NH ⁴⁺ , Pb ²⁺ , Bl ³⁺ , Cu ²⁺ , Al ³⁺ , Fe ³⁺ ,
		11	Carbanions: Perkin Reaction, Aldol condensation, Claisen-Schmitt condensation.		Co ²⁺ , Cr ³⁺ , Ni ²⁺ , Zn ²⁺ , Mn ²⁺ , Ba ²⁺ , Ca ²⁺ , Sr ²⁺ , Mg ²⁺ , Na ⁺ , K ⁺ and Li ⁺ ,

/						(hanaght First City)
			12	Problems on rate constant (a=b), Methods of determination of order of a reaction (half-life method, isolation method),	(Anions: CO_3^2 CH3COO', Cl', Br-71, 5 NO ₃ , BO ₃ , SO ₄ ² , 7 C ₂ O ₄ , and PO ₄ , Spot tests and flame tests to be carried out wherever possible.
	A	4	13	Paper chromatography: Theory and applications		Qualitative semi-micro analysis of mixtures containing 2 anions and
		-	14	Classification of ionic structures: Ionic compounds of the type AX (ZnS, NaCl, CsCl), Ionic compounds of the type AX2	4	2 cations Cations: NH ⁴⁺ , Pb ²⁺ ,
•			15	Carbenes: Singlet and triplet states, their relative stability. Riemer-Tieman,		Bi ³⁺ , Cu ²⁺ , Al ³⁺ , Fe ³⁺ , Co ²⁺ , Cr ³⁺ , Ni ²⁺ , Zn ²⁺ , Mn ²⁺ , Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ,
			16	temperature dependence of reaction rates; Arrhenius equation, activation energy,		Mg ²⁺ , Na ⁺ , K ⁺ and Li ⁺ . Anions: CO_3^{2-} , CH3COO ⁻ , Cl ⁻ , Br ⁺ , l ⁺ , NO ₃ ⁻ , BO ₃ ⁻³⁻ , SO ₄ ⁻²⁻ , C ₂ O ₄ ⁻²⁻ and PO ₄ ⁻³⁻ . Spot tests and flame tests to be carried out wherever possible.
			17	Thin layer chromatography (TLC): Mechanism, Rf value, efficiency of TLC plates		Qualitative semi-micro analysis of mixtures containing 2 anions and 2 cations
0	A	5	18	Classification of ionic structures: Ionic compounds of the type AX (ZnS, NaCl, CsCl), Ionic compounds of the type AX2	5	Cations: NH ⁴⁺ , Pb ²⁺ , Bi ³⁺ , Cu ²⁺ , Al ³⁺ , Fe ³⁺ , Co ²⁺ , Cr ³⁺ , Ni ²⁺ , Zn ²⁺ ,
			19	Carbenes: Wolff rearrangement. Nitrenes: Singlet and triplet states, their relative stability		Mn^{2+} , Ba^{2+} , Ca^{2+} , Sr^{2+} , Mg^{2+} , Na^+ , K^+ and Li^+ . Anions: CO_3^{2-} , $CH3COO^-$, Cl^- , Br^- , l^- ,

			20	Numerical problems on Arrhenius equation in calculating energy of activation and rate constants. Collision theory of reaction rates,		NQ ₃ , BO_3^3 , $SO_4^{2^2}$, C_2O_4 and PO_{43}^3 , $Spath$ tests and flame tests to be carried out wherever possible. Qualitative semi-micro
			21	TLC: Methodology-selection of stationary and mobile phases, development,		analysis of mixtures containing 2 anions and 2 cations
			22	Lattice energy and Born-Haber cycle	6	Cations: NH ⁴⁺ , Pb ²⁺ ,
	A	6	23	Nitrenes: Hoffman and Curtius reactions.	0	Bi ³⁺ , Cu ²⁺ , Al ³⁺ , Fe ³⁺ , Co ²⁺ , Cr ³⁺ , Ni ²⁺ , Zn ²⁺ , Mn ²⁺ , Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ,
)			24	Lindemann's mechanism, qualitative treatment of the theory of absolute reaction rates. Experimental determination of kinetics of (i) inversion of cane sugar by polarimetric method		Mg ²⁺ , Na ⁺ , K ⁺ and Li ⁺ . Anions: $CO_3^{2^-}$, CH3COO ⁺ , Cl ⁺ , Br ⁺ , l ⁺ , NO ₃ ⁻ , BO ₃ ^{-3^-} , SO ₄ ^{-2^-} , C ₂ O ₄ ^{-2⁻} and PO ₄ ^{-3⁻} . Spot tests and flame tests to be carried out wherever possible.
			25	TLC: Spray reagents, identification and detection, qualitative applications.		Qualitative semi-micro analysis of mixtures containing 2 anions and
	А	7	26	Derivation of Born-Lande equation and its drawbacks,	7	2 cations Cations: NH ⁴⁺ , Pb ²⁺ ,
			27	Arynes: Formation, detection. Bromobenzene to aniline, (4+2) cycloaddition reaction.		Bi ³⁺ , Cu ²⁺ , Al ³⁺ , Fe ³⁺ , Co ²⁺ , Cr ³⁺ , Ni ²⁺ , Zn ²⁺ , Mn ²⁺ , Ba ²⁺ , Ca ²⁺ , Sr ²⁺ ,
			28	(ii) spectrophotometric method for the reaction between potassium persulphate and potassium iodide.		Mg ²⁺ , Na ⁺ , K ⁺ and Li ⁺ . Anions: $CO_3^{2^-}$, CH3COO ⁻ , Cl ⁻ , Br ⁺ , l ⁺ , NO ₃ ⁻ , BO ₃ ^{-3, SO₄^{-2, -}, C₂O₄^{-2, -} and PO₄^{-3, -}. Spot tests and flame tests to be carried out wherever possible.}

		29	TLC: Solvent Extraction: Types - batch, continuous, efficiency, selectivity,		Determination of the enthalpy of
A	8	30	Kapustinskii equation, solvation energy and solubility of ionic solids,	8	neutralization of a strong acid with strong base.
		31	Reaction Intermediates: Generation, structure, stability and reactions involving; i. Carbocations to ARYNES		
		32	Electrochemistry – I: Introduction, strong and weak electrolytes, definition with examples.		
		33	TLC: distribution coefficient, Nernst distribution law, derivation,		Verification of Freundlich and
		34	polarizing power and polarizability		Langmuir isotherms for adsorption of acetic
		35	Methods for Identifying Reaction Mechanism:	9	acid on activated charcoal.
A	9	36	Arrhenius theory of electrolytic dissociation. Merits and Demerits, Conductance, Specific conductance,		
		37	TLC: factors affecting the partition, relationship between % extraction and volume fraction,		The study of kinetics of potassium persulphat and potassium iodide
А	10	38	Fajan's rules with applications. Numerical problems	10	volumetrically.
		39	Product analysis,	_	
		40	equivalent and molar conductivity and their variation with dilution. Molar conductivity at infinite dilution. Numerical problems.		
		41	TLC:Numerical problems on solvent extraction. Solvent extraction of iron and copper.		Determination of velocity constant fo acid catalyzed

A	11	42	Covalent bond: Valence bond theory,		hydralysis of methyl
			The Lewis theory, The octet rule, Exceptions to the octet rule, Sidgwick- Powell theory	11	acetate volumetrically.
		43	Isolation and Identification of Intermediates		Determination of velocity constant for the saponification of
		44	Kohlrausch's law of independent migration of ions and its applications, Debye-Hückel Onsager equation.		ethyl acetate (a = b) volumetrically.
		45	Ion exchange chromatography: resins, types with examples- cation exchange and anion exchange resins		
A	12	46	Valence shell electron pair repulsion (VSEPR) theory, Effect of lone pairs, electronegativity	12	Conductometric titration of strong acid and strong base.
		47	Stereochemical Evidences,		
		48	Ionic mobilities and their determinations, transference numbers and their relation to ionic mobility's, determination of transference numbers using Hittorf and Moving Boundary methods.		Conductometric titration of weak acid and strong base.
		49	Mechanism of cation and anion exchange process and applications of ion- exchange chromatography		
A	13	50	Isoelectronic principle, Examples using VSEPR theory: BF3 and BF4 - , NH3 and NH4 +, H2O, PCI5,	13	Practical Test: Part - 1
		51	Effect of Catalyst, crossover Experiments,		
		52	Applications of conductance measurement: (i) Degree of dissociation of weak electrolytes (ii) ionic product of water		

and Flose (

2.2.4

					Stanaght First Graz
		53	Softening of hard water, separation of lanthanides, industrial applications		No
		54	VSEPR theory: CIF3, SF4, I3 - and I3 +, SF6, and IF7. Limitations of VSEPR.	14	Practical Test: Part
A 14	14	55	Isotopic studies, Kinetic Studies.		
		56	Applications of conductance measurement: (i) Degree of dissociation of weak electrolytes (ii) ionic product of water		
		57	Revision of syllabus.		Repetition of experiments
В		58	Revision of syllabus.		
		59	Revision of syllabus.		
		60	Revision of syllabus.	15	

HOD of Chemistry SAFG College Channarayapatna-573116 Hassan Dist

De jungthom.K

Principal Sri Adichunchanagiri First Grade Collage Channarayapatna-573 116

SRI ADICHUNCHANAGIRI FIRST GRADE COLLEGE ,CHANNAR, DEPARTMENT OF CHEMISTRY B.Sc. Fourth Semester ((NEP)

LESSON PLAN FOR THE SESSION 2022-2023 (Even Semester)

FIRST

Name of the Faculty	Dr. N Shankaresha, Dr.B.N.Chandrashekar, Mrs. Premakumari.A.C, Miss. Apoorva (Theory and Practical)
Semester	: 4 th
Title of the Paper	: CHEMISTRY –IV
Subject code	: CHEDSC401
Lesson Plan Duration	: 16 weeks
	•

Total teaching period : 56 Hours

Work Load (Lecture/Practical) Per Week (in hours): Lecture - 04, Practical - 04

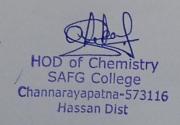
	Week	Theory		Practical		
Part		Lecture Day	Topic including Assignment/Test	Practica l Day	Торіс	
		1	Quantitative analysis-Instrumental methods: Electromagnetic spectrum. Structure and Bonding -II:Concept of resonance, resonance energy,		Qualitative analysis of mono Organic compounds: Urea	
A	1	3	Structure and Stereochemistry of Organic Compounds:Concept of isomerism, types of isomerism. Projection formulae of chiral molecules-Fischer (glyceric acid),	1		

					Conselli First Graze
		4	First Law of Thermodynamics: Introduction, system, surroundings, types of systems.Thermodynamic Processes (isothermal, adiabatic, isochoric, isobaric and cyclic),	Alchug	Analiti First Graze
		5	absorption ofelectromagnetic radiation,		Qualitative analysis of mono and bifunctional Organic
A	2	6	hybridization, types of hybridization, sp, sp2, sp3, dsp2, dsp3, d2sp3, sp3d2 with one example each	2	compounds:Benzoic acid
		7	Newman (2,3-dibromobutane), Sawhorse (2,3-dibromobutane) and Fly-wedge (glyceric acid) projection formulae. Interconversion of projectionformulae:		
		8	Natureof Heat and Work, Internal Energy, First Law of thermodynamics, Enthalpy of a System		
		9	Definition and units of frequency, wavelength, wave number		Qualitative analysis of mono Organic compounds: Salycili
A	3	10	Energetics of hybridization. Bent'srule, Limitations of Valence Bond Theory.Molecular Orbital theory: LCAO concept: s-s, s-p, p-p, p-d and d-d combinations of orbitals, bonding	3	acid,aniline
	-	11	Conversion of; Fisher into Sawhorse projection (tartaric acid), Sawhorse intoFisher projection (2,3- dibromobutane), Sawhorse to Newman to Fisher projection (3- amino-3-bromo-2-chlorobutan-2-ol),		

				1	Stinchanagiri Filare				
		12	Work done in isothermal and adiabatic expansion of an ideal gas, Numerical problems		5 DL				
A	4	13	Beer's law, Beer-Lambert law derivation		Qualitative analysis of bifunctional Organic				
		14	nonbonding andantibonding molecular orbitals		compoundsSalicylald ehyde				
		15	Fisher to Newman to Sawhorse (3- chloro-2,4-dihydroxybutanal), Fisher into Fly-wedge formula and vice- versa (2-bromo propanoicacid),						
		16	Joule -Thomson Expansion, Relation between Joule-Thomson coefficient and otherthermodynamic parameters.						
		17	deviations from Beer's law, limitations		Qualitative analysis of mono Organic compounds:				
А	5	5	5	5	5	18	non-bondingcombinations of orbitals, Rules for linear combination of atomic orbitals	5	acetanilide
		19	Geometrical isomerism: Cause of geometrical isomerism. Cis-trans isomerism(cinnamic acid, but-2- enedioic acid) and syn-anti isomerism (benzaldoxime, ethyl methylketoxime),						
		20	Second law of Thermodynamics: Limitations of first law of thermodynamics. Reversibleand Irreversible Processes,						
		21	construction of calibration graph (Plot of absorbance versus concentration)		Qualitative analysis bifunctional Organic compoundsDichlorob				

•

/						Suchanagiri First
	A	6	22	Examples of molecular orbital treatment for homonuclear diatomic molecules: H2, molecule, H2+ molecule ion,	6	enzene No
		-	23	E/Z notations with examples following C.I.P rules.		and dealers
			24	Concept of entropy, thermodynamic scale of temperature,Statements of the Second Law of Thermodynamics,		
			25	Evaluation, Procedures- standard addition		Qualitative analysis bifunctional Organic compounds : p-Nitro
0	A	7	26	He2 molecule, He2+ molecule ion, Li2 molecule, Be2 molecule,B2 molecule, C2 molecule, N2 molecule, N2+ molecule ion, O2 molecule, O2- and O22- moleculeions.	7	toluene
			27	Optical Isomerism: Optical activity, conditions for optical activity- Elements of symmetry(plane, centre, C2-axis, rotation-reflection with examples).		
			28	molecular and statistical interpretation of entropy, Calculation of entropy change for reversible and irreversible processes		
C			29	Internal standard addition,validation parameters-detection limits, sensitivity, dynamic/linearity range		Qualitative analysis bifunctional Organic compounds : o-Cresol
	A	8	30	M.O. Energy diagrams of heteronuclear diatomic molecules with examples (NO, NO+, CO and HCl)	8	


,

				•		Sunchanaciti Firse Contra Sunchanaciti Firse Contra Dy Di
			31	Specific rotation,Chirality/Asymmetry, Enantiomers-definition with examples,		DL
			32	Free EnergyFunctions: Gibbs and Helmholtz energy		
			33	Instrumentation, single beam and double beam spectrophotometers,		Colorimetric determination of
			34	Calculation of bond order, relationship between bond order, bond energy	9	copper using ammonia solution.
6	A	9	35	properties, Molecules withtwo or more chiral centres,		
			36	variation of S, G, A with T, V and P, Numericalproblems, Free energy change and spontaneity, Gibbs- Helmholtz equation.		
	A	10	37	quantitative applications of colorimetry (determination of Fe, Mo, Cu, Ti and PO43-) and numerical problems on application of Beer's law.	10	Colorimetric determination of iron using thiocyanate solution.
1			38	bond length, magnetic properties based on MOT.		
			39	Diasteroisomers-definition with examples (threo and erythoisomers),		
			40	Third Law of Thermodynamics: Statement of third law, concept of residual entropy,calculation of absolute entropy of molecules.		

,

[41	Nephelometry and Turbidimetry: Introduction, principle,		Caloninetric determination of
	A	11	42	Metallic Bonding: General properties of metals-conductivity, lustre, malleability and cohesive force.	11	solution
			43	properties. Meso compounds- definition with examples.		
			44	Surface Chemistry Adsorption: Introduction, types of adsorptions with examples. Types of adsorption isotherms. Freundlich adsorption isotherm (only equation),		
6			45	instrumentations of nephelometry and turbidimetry;		Determination of Rf values of two or three component systems
	A	12	46	Crystal structures of metals and Bond lengths.Theories of bonding in metals:	12	by TLC.
			47	optical isomerism intartaric acid, biphenyls.		
			48	Limitations.Langmuir adsorption isotherm (derivation to be done) and BET equation (derivation not included).		
			49	effects of concentration, particle size and wavelength onscattering;		Separation of different metal ions by paper
6	A	13	50	Free electron theory, valence bond theory, molecularorbital or band theory of solids. Prediction of conducting properties of conductors,	13	chromatography/ Solvent extraction of iron using oxine solution
			51	Asymmetric synthesis, Walden inversion. Racemicmodification- Definition with examples.		(demonstration).

/						munchanan'n First
			52	Catalysis: Types of Catalysis positive, negative, auto and induced), characteristics of catalysis, and theories with examples (intermediate compound theory and adsorptiontheory), Theory of acid base catalysis, Michaelis-Menten mechanism.		DL. ST3116 3
			53	Choice between nephelometry, applications of nephelometry&turbidimetry(determin ation of \$042- and PO43-).	14	Test
•	А	14	54	Insulators and semiconductors, extrinsic and intrinsic semiconductors using M.O. theory.		
			55	Resolution-definition with examples, chemical andbiochemical methods of resolution, Relative and absolute configuration, D/L convention,limitations, and R/S designations-CIP rules with examples.		
$\hat{\mathbf{v}}$			56	Heterogeneouscatalysis: surface reactions, unimolecular, bimolecular surface reactions. Autocatalysis with examples. Applications: Design process to removal of toxic compounds from industrialwastewater and treatment of portable water requirements.		
			57	Revision of syllabus.		Repetition of experiments
			58	Revision of syllabus.		enpermento
			59	Revision of syllabus.		
	B		60	Revision of syllabus.	15	

·K Jungthe.M Me

Principal Sri Adichunchanagiri First Grade Collage Channarayapatna-573 116

SRI ADICHUNCHANAGIRI FIRST GRADE COLLEGE ,CHANNARAYAPAT DEPARTMENT OF CHEMISTRY B.Sc. Fifth Semester (CBCS)

LESSON PLAN FOR THE SESSION 2022-23 (Odd Semester)

Name of the Faculty	:	Dr. N Shankaresha, Dr B N. Chandrashekar, Mrs.A.C.Premakumari Mrs.Apoorva (Theory and Practical)
Semester	:	V
Title of the Paper	:	CHEMISTRY –V (DSE-2A)
Subject code	:	(DSE-2A)
Lesson Plan Duration	:	15 weeks
Total teaching period	:	60 Hrs.

Work Load (Lecture/Practical) Per Week (in hours): Lecture - 04, Practical - 04

1

			Theory		Practical
Part	Week	Lecture Day	Topic including Assignment/Test	Practical Day	Торіс
	1	1	Silicate Industries Glass: Raw materials, glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass		Introduction to
		2	Terpenes: Definition, isoprene rule, classification, isolation (solvent extraction and steam distillation) structural elucidation of citral and its synthesis, structural formulae of α -terpeniol, camphor and menthol.	1	laboratory experiments.

old Firse

810.

chunch,

A		3	Spectrophotometry and photochemistry: Lambert – Beer's law – statement and mathematical form (to be derived). Molar extinction coefficient – definition – spectrophotometer – construction and working, its application.		STEROK
		4	Composition and properties of the following types of glasses: Soda lime glass, lead glass, armoured glass,		
		5	Laws of photochemistry – Grotthus- Draper law of photochemical activation and Einstein's law of photochemical equivalence, quantum efficiency,	2	Gravimetric estimation of barium as barium sulphate
	2	6	safety glass, borosilicate glass, fluorosilicate, coloured glass, photosensitive glass.		
		7	indole (Fischer method) quinoline (Skrup's synthesis with mechanism), isoquinoline, pyrimidine		
		8	aromaticity and basicity of pyrrole and pyridine. Electrophillic substitution reactions of pyrrole and pyridine.		
		9	reasons for low quantum yield (HBr formation as example) and high quantum yield (HCl formation as example), actinometry – Uranyl oxalate actinometer.	3	Gravimetric estimation of iron a iron (III) oxide.
	3	10	. Ceramics: Important clays and feldspar, ceramic, their types and manufacture. High technology ceramics and their applications		

				No.
	11	Uric acid: Elucidation of structure and synthesis by Fischer's method		E Dimension 573114 Caston anavoration
	12	Photophysical processes: Definition with examples – photosensitization (eg. photosynthesis in plants), photo inhibition,		
	13	conversion of uric acid to purine and caffeine		Estimation of percentage of
4	14	superconducting and semiconducting oxides, fullerenes carbon nanotubes and carbon fibre.	4	calcium in limestone by oxalate method.
	15	Alkaloids: Definition, classification based on heterocyclic rings-isolation	-	
	16	fluorescence, phosphorescence, chemiluminescence and bioluminescence with examples.		
	17	Determination of absorbed intensity – schematic diagram of apparatus used.		Gravimetric estimation of copper as copper (I)
5	18	synthesis and structural elucidation of nicotine	5	thiocyanate.
	19	Cement : Classification of cement, ingredients and their role		
	20	Manufacture of cement and the setting process, quick setting cement.		
	21	Morphine, physiological importance of alkaloids.		Gravimetric

					Sanagiri Firm S
	6	22	Vitamins: Definition, classification, structural elucidation and synthesis of Vit-A		estimation of nickel as nicket dimethylgbjökimate.
		23	Detectors – thermopile, photoelectric cell.	6	" nonmasa 2"
A		24	Synthesis of Vit-C, structural formulae of Vit B		
		25	Fertilizers: Different types of fertilizers.		Gravimetric estimation of
	7	26	Fertilizers: Different types of fertilizers: NPK		magnesium as magnesium -8- hydroxy oxinate
		27	Manufacture of the following fertilizers: Urea	7	
		28	B2, B6, calciferol, E and K and their importance		
		29	Inorganic chemistry internals (C1)	8	Repetition of experiments
	8	30	Organic chemistry internals (C1)		
		31	Physical chemistry internals (C1)		
		32	General chemistry internals (C1)		
		33	Radiation Chemistry: Definition, primary and secondary stages in		Estimation of
			radiochemical reactions		manganese in the given sample of

					Startaght First Guy
	9	34	ammonium nitrate, calcium ammonium nitrate, Hormones: Definition, classification,	9	pyrolusite to
		36	synthesis of adrenaline ionic yield, energy yield, comparison with photochemistry,		- anna
		37	thyroxine, structural formulae of estradiol,		Preparation of standard potassium dichromate solution
	10	38	ammonium phosphates; polyphosphate, superphosphate, compound and mixed fertilizers,	10	and estimation of iron in the given sample of hematite
		39	progesterone and testosterone and their importance		by dichromate method.
		40	units of radiation – rad, gray and roentgen,		
		41	Dosimeter – Fricke dosimeter		
	11	42	Drugs: Chemotherapy and chemotherapeutic agents, definition of drugs, types of drugs	11	Estimation of magnesium in the given sample of dolomite by EDTA
		43	Surface Coatings: Objectives of coatings surfaces, preliminary treatment of surface		method
В		44	classification of surface coatings. Paints and pigments- formulation, composition and related properties		
D	12	45	antipyretics, analgesics, anesthetics, sedatives, narcotics		.Estimation of percentage of calcium
	12	46	theories of radiolysis – Lind's and EHT theories.		in limestone by oxalate method.

				Sanaght First Guige
	47	Radiolysis of water vapour, benzene and acetic acid.	12	(1) (Nomination and) (1)
	48	Molecular Spectroscopy: Regions of spectra, types of spectra, microwave spectra – rotational spectra of diatomic molecules		ST3110 ST3110
	49	Oil paint, Vehicle, modified oils, Pigments, toners and lakes pigments, Fillers		Test
	50	antiseptics, antibacterials, antibiotics, antimalarials and sulpha drugs with examples.	13	
13	51	moment of inertia (expression to be derived). Expression for rotational energy,		
	52	Thinners, Enamels, emulsifying agents. Special paints (Heat retardant, Fire retardant, Eco- friendly paint, Plastic paint),		
	53	Dyes, Wax polishing, Water and Oil paints, additives; metal spraying and anodizing		
14	54	Synthesis of paracetamol, sulphanilamide, sulphaguanidine. [14	Repetition of experiments
	55	selection rule and transition equal spacing between rotational spectral lines (to be discussed), effect of isotopic substitution taking example of 12C16O and 13C16O, calculation of bond length.		

,

		56	. IR Spectra – vibrational spectra of diatomic molecules – force constant (no derivation), expression for vibrational energy, zero point energy, selection rule and transitions. Vibrational		All Stranger Stranger
		57	Revision of syllabus.		
		58	Revision of syllabus.		
B		59	Revision of syllabus.		Practice lab
	15	60	Revision of syllabus.	15	

HOD of Chemistry Channarayapatna-573116 Hassan Dist

Me jovathome Principal Sri Adichunchanagiri First Grade Collage Channarayapatna-573 116

SRI ADICHUNCHANAGIRI FIRST GRADE COLLEGE CHANNARA YAPA DEPARTMENT OF CHEMISTRY B.Sc. Fifth Semester (CBCS)

LESSON PLAN FOR THE SESSION 2022-23 (Odd Semester)

Name of the Faculty	: Dr.B.N.Chandrashekar, Mrs. Apoorva (Theory and Practical)
Semester	: V
Title of the Paper	: SEC:2 FUEL CHEMISTRY
Subject code	: DSE-2A
Lesson Plan Duration	: 16 weeks
Total teaching period	: 30 Hrs.

Work Load (Lecture/Practical) Per Week (in hours): Lecture - 02, Practical - 00

			Theory
Part ⁻	Week	Lecture Day	Topic including
			Assignment/Test
	1	1	Review of energy sources (renewable and non-renewable).
	1	2	Petroleum and Petrochemical Industry: Composition of crude petroleum
A	2	3	Classification of fuels and their calorific value.
		4	Refining and different types of petroleum products
	3	5	Coal: Uses of coal (fuel and nonfuel) in various industries, its composition
		6	Refining and different types of petroleum products
	4	7	Carbonization of coal. Coal gas,
		8	Fractional Distillation (Principle and process)

Sinchanaelri Flas

annars

j.			angolid First Co
			See State
	5	9	producer gas and water gas—composition and uses Cracking (Thermal and catalytic cracking) Fractionation of coal tar, uses of coal tar bases chemicals,
	5	10	Cracking (Thermal and catalytic cracking)
		11	Fractionation of coal tar, uses of coal tar bases chemicals,
	6	12	Reforming Petroleum and non-petroleum fuels- LPG
	_	13	requisites of a good metallurgical coke
	7	14	CNG, LNG
		15	Coal gasification - Hydro gasification
	8	16	bio-gas, fuels derived from biomass
	9	17	Coal gasification - Catalytic gasification
		18	fuel from waste, synthetic fuels (gaseous and liquids)
	10	19	Coal liquefaction and Solvent Refining
	10	20	clean fuels
	11	21	Lubricants: Classification of lubricants, l
		22	Petrochemicals: Vinyl acetate
		23	lubricating oils (conducting and non-conducting)
	12	24	Propylene oxide, Isoprene
		25	Solid and semisolid lubricants,
	13	26	Butadiene, Toluene
	14	27	Properties of lubricants (viscosity index, cloud point, pore point) and their determination.
		28	Toluene and its derivatives Xylene
		29	Revision of syllabus.
B	15	30	Revision of syllabus.

HOD of Chemistry SAFG College Channarayapatna-573116 Hassan Dist

./.

o-M-K No koeras

Principal Sri Adichunchanagiri First Grade Collage Channarayapatna-573 116

SRI ADICHUNCHANAGIRI FIRST GRADE COLLEGE ,CHANNARAYAPATNA

LESSON PLAN FOR THE SESSION 2022-23 (Odd Semester)

Name of the Faculty	Dr. N Shankaresha, Dr B N Chandrashekar, Mrs. A.C. Premakumari, Miss. Apoorva (Theory and Practical)
Semester	:VI
Title of the Paper	:CHEMISTRY –VI (DSC-2B)
Subject code	:F19
Lesson Plan Duration	:16 weeks (from April, 2023 to Aug, 2023)
Total teaching period	:60 Hrs.

Work Load (Lecture/Practical) Per Week (in hours): Lecture - 04, Practical - 04

					Theory		Practical
Part	Week	Lectur e' Day	Topic including Assignment/Test	Practical Day	Торіс		
		1	Metallurgy: Chief modes of occurrence of metals based on standard electrode potentials		Introduction to laboratory		
	1	2	Ellingham diagrams for reduction of metal oxides using carbon as reducing agent.		experiments.		
		3	Special techniques in organic synthesis: a) Polymer supported reagents – introduction, properties of polymer support-advantages of polymer support reagents	1			
		4	choice of polymers, types and				

					E No.
			applications		
		5	Electrochemistry Electrolytic and electrochemical cells, electrode reaction of Daniel cell	2	constant of saponification of ethyl acetate by
A	2	6	Pyrometallurgy: Extraction of Nickel from sulphide ore – general metallurgy followed by Mond's process (purification)	2	conductivity measurements.
		7	c) Microwave induced organic synthesis – introduction, reaction vessel		
		8	convention of representing a cell, EMF and standard EMF of a cell, cell reaction		
	3	9	Manganese from oxide ores – reduction by the Aluminothermite process – refining by electrolytic process.	3	Conductometric titration of strong acid x strong base and weak acid x strong base.
		10	EMF and standard EMF of a cell, cell reaction, Adsorption: Adsorption of gases on solids – factors which influence. Adsorption isotherms (definition) –Freundlich's and Langmuir's adsorption isotherms		
		11	d) Sonochemistry – use of ultra sound in organic synthesis,		
		12	Introduction, instrumentation, physical aspects, types and applications.		
	4	13	Hydrometallurgy: Extraction of gold from native ore by cyanide process. Refining by quartation process.	4	Potentiometric titration of ferrous ammonium sulphate against potassium
		14	Natural Pigments: Introduction to anthocyanines.		dichromate

				,	anagiri First Ga
		15	structural formulae and their importance of anthocyanins	Adichin	No
		16	reversible and irreversible cells,BET equation (to be derived). Applications of adsorption.		*Chanmay 310 28
		17	Nernst equation (to be derived) and calculation of electrode potential		pH titration of strong acid against strong base (by observing
		18	β-carotene and haemoglobin		change in pH).
	5	19	Electrometallurgy: Extraction of lithium by fusion method followed by electrolysis of lithium chloride.	5	
		20	Powder metallurgy: Importance, and applications. production of tungsten powder		
		21	Diazonium Compounds: preparation, mechanism of preparation		Potentiometric titration of mixture of HCl and CH ₃ COOH
	6	22	synthetic applications of benzene diazonium chloride		using NaOH solution
А		23	Standard hydrogen gas electrode	6	
		24	Electrochemical series and its significance.		
		25	Conversion to phenol, halobenzene, phenyl hydrazine.		Colorimeteric estimation of Fe ₃₊ ion using ammonium
	7	26	Coupling reaction.		thiocyanate as complexing agent
		27	reference electrodes-calomel and Ag- AgCl electrode-construction and working	7	complexing agent
		28	Hydroxy acids: Synthesis of lactic, citric and tartaric acids.		

	29	Inovania di la dia di	,	Consecutivity .
	29	Inorganic chemistry internals (C1)		Contraction of the second seco
8	30	Organic chemistry internals (C1)	8	Repetition of experiments
	31	Physical chemistry internals (C1)	-	
	32	Discussion and solving the internals test papers	_	
	33	One method each and their importance. Effect of heat on α , β , γ - hydroxy acids.		Colorimeteric estimation of Cu2+ ion using NH4OH as
9	34	Alloys: Classification of alloys, ferrous and non-ferrous alloys,	9	complexing agent.
	35	Principles of electroplating. Specific properties of elements in alloys		
	36	Nucleic acids: Types, components, formation of nucleic acids		
10	37	Bio-Inorganic Chemistry A brief introduction to bio-inorganic chemistry		
10	38	equilibrium constant and free energy of cell reaction	10	
	39	Spontaneity of a cell reaction, concentration cells.		
	40	EMF of concentration cells: Definition with explanation – with		

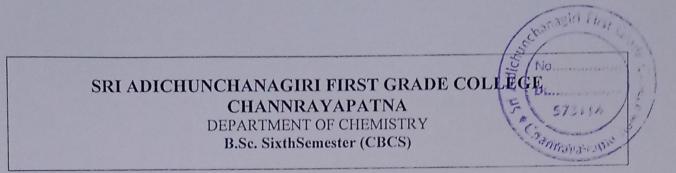
			,		anaBirt First
			transference and without transference		Home in the second seco
		41	Structure of DNA and RNA		Condiministeric study of
	11	42	Importance of these in biological system	11	kinetics of oxidation of indigocarmine by chloramine-T.
		43	Identification of organic compounds by spectroscopic technique: UV-visible spectroscopy: Introduction, chromophores and auxochrome, blue shift and red shift,		
B		44	Essential and trace elements in biological process.	-	
	12	45	Role of metal ions present in biological systems with special reference to Na+, K+ and Ca2+, Mg2+ ions		
		46	Na/K pump; Role of Mg2+ ions in energy production and chlorophyll.	12	
		47	Graphical representation of spectra of 1,3-butadiene, benzene and lycopene		
		48	Influence of conjugation on UV absorption-comparison of UV spectra of acetone and methylvinyl ketone		
	13	49	Concentration cells – with examples. Liquid junction potential and salt bridge. (Numerical problems on Nernst equation and EMF calculations).		Test
		50	Application of EMF measurements: (a) Determination of pH of a solution using quinhydrone electrode and glass electrode (using dip type Calomel electrode) – Explanation with principle and procedure	13	

,

0

 \bigcirc

				nagirt Flose
	51	 b) Potentiometric titration – principle, location of end points in - (1) Neutralization reactions [NaOHVsHCI] (2) Oxidation- reduction reactions [K2Cr2O7 Vs FAS] (3) Precipitation reaction [KClVs AgNO3] and (4) Complexometric reactions (ZnSO4 Vs K3[Fe(CN)6]) 		No. STELLA S
	52	IR-Spectroscopy: Introduction, stretching frequency of –OH (free and H-bonded), alkyl –C-H, C=C, C=C, C-C, C=O and C-O groups (by taking suitable examples). Graphical representation of IR spectra of benzoic acid and methyl benzoate		
14	53	NMR Spectroscopy: Basic principles of proton magnetic resonance , nuclear magnetic spin quantum number I, influence of the magnetic field on the spin of nuclei, spin population, saturation using radio frequency	14	Repetition of experiments
	54	Manufacture of Steel (removal of silicon decarbonization, demanganization,desulphurization dephosphorisation) and surface treatment (argon treatment, heat treatment, nitriding, carburizing). Composition and properties of different types of steels.		
	55	Role of Ca2+ ions in blood clotting, Enzymatic role of iron in haemoglobin and myoglobin, Mg in chlorophyll and cobalt in vitamin-B12		
	56	NMR Spectroscopy: Basic principles of proton magnetic resonance, nuclear magnetic spin quantum number I, influence of the		


+

C

		·			hanagiri First
			magnetic field on the spin of nuclei, spin population, saturation using radio frequency, nuclear magnetic resonance-chemical shift (δ value), uses of TMS reference		No. ST3116 ST3116 ST3116
в	15	57	nuclear shielding effects, equivalent and non-equivalent protons, spin-spin splitting and coupling. Applications of NMR spectroscopy to simple organic molecules (like ethyl alcohol, ethane, propane, ethylene, methylamine, aniline, benzene, toluene, acetone, acetophenone, methyl cyanide and other simple molecules.	15	Practice lab
		58	Kinetics of fast reactions and techniques: Introduction, examples of fast reactions. Techniques – principle and procedure involved in - stopped flow method, flash photolysis, temperature jump method and pressure jump method.		
		59	. stabilization of protein structures and structural role (bones). Biological functions and toxicity of Cr, Mn, Co, Ni and I, Hg, Mo and Se.		
		60	Revision of syllabus.		

HOD of Chemistry SAFG College Channarayapatna-573116 Hassan Dist

Sri Adichunchanagiri First Grade Collage Channarayapatna-573 116

LESSON PLAN FOR THE SESSION 2022-23(Even Semester)

Name of the Faculty	:Dr.B.N.Chandrashekar, (Theory)
Semester	: VI
Title of the Paper	: SEC:4CHEMICAL TECHNOLOGY, PESTICIDE CHEMISTRY & SOCIETY
Subject code	: SEC:4
Lesson Plan Duration	: 15 weeks
Total teaching period	: 30 Hrs.

Work Load (Lecture/Practical) Per Week (in hours): Lecture - 02, Practical - 00

		Theory			
Part	Week	Lecture	Topic including		
		Day	Assignment/Test		
	1	1	Chemical Technology: Basic principles of distillation		
		2	Solvent extraction, solid-liquid leaching		
		3	Liquid-liquidextraction		
A	2	4	An introduction into the scope of different		
A			types of equipment needed in chemical technology,		
	3	5	Including reactors		
		6	Distillation columns		
	4	7	Extruders		
		8	Pumps, mills		
	5	9	Emulgators. Scaling up operations in chemical industry.		
		10	Introduction toclean technology.		
	6	11	Pesticide Chemistry General introduction to pesticides (natural and synthetic),		
		12	benefits and adverse effects		

				Changingconcepts of pesticides,
ſ		7	13	Changingconcepts of pesticides,
			14	structure activity relationship, synthesis and technical manufacture
		8	15	Uses of representative pesticides in the following classes:
			16	Organophosphates (Malathion, Parathion)
		9	17	Carbamates (Carbofuran and carbaryl);
			18	Quinones (Chloranil),
		10	19	Anilides (Alachlor and Butachlor).
		10	20	Unit Test for Chapter 1 and 2
			21	Society:Exploration of societal and technological issues from a chemical perspective.
		11	22	Chemical and scientific literacy as a means to better understand topics like air and water
		12	23	The tracematerials found in water and air that are referred to as pollutants)
			24	Energy from natural sourcessources (i.e. solar and renewable forms)
		13	25	Fossil fuels and from nuclear fission
			26	Materials like plastics andPolymers and their natural analogues
		14	27	Proteins and nucleic acids, and molecular reactivity
				Interconversions from simple examples like combustion to
			28	complex instances like geneticengineering and the manufacture of drugs.
		15	29	Revision of syllabus.
	В		30	Revision of syllabus.

HOD of Chemistry SAFG College Channarayapatna-573116 Hassan Dirt

1

jungham.K

magiri Fi

Principal Sri Adichunchanagiri First Grade Collage Channarayapatna-573 116