|| Jai Sri Gurudev || Sri Adichunchanagiri First Grade College Channarayapatna

DEPARTMENT OF PHYSICS

LESSON PLAN FOR THE ACADEMIC YEAR 2023-24

Programme: B.Sc. (NEP) Even-Sem

Course/Paper Name: Electricity & Magnetism

	Semester: II		Total Hour	Total Hours:64	
Sl.	Topic covered	No. of Lecture	Methodology	Date	
No.		Hours	/pedagogy		
1	Electric charge and field: Coulomb's law,	3	Black board	1 st and 2 nd week	
	electric field strength, electric field lines,				
	point charge in an electric field and electric				
	dipole, work done by a charge(derivation of				
	the expression for potential energy)			1	
2	Gauss's law and its applications: (electric	3	Black board	3 rd week	
	fields of a (i) spherical charge		&		
	distribution, (ii) line charge and (iii) an		Lecture		
	infinite flat sheet of charge.		PPT		
3	Electric potential: Electric potential, line	7	Black board	3 rd and 4 th week	
	integral, gradient of a scalar function, relation	l	&		
	between field and potential. Potential due to		Lecture		
	point charge and distribution of charges		PPT		
	(Examples: potential associated with a		111		
	spherical charge distribution, infinite line				
	chargdistribution, infinite plane sheet of				
	charges). Constant potential surfaces,				
	Potential due to a dipole an electric				
	quadrupole.				
4	Conductors in electrostatic field: Conductors	6	Black board,	4 th to 6 th Week	
	in electrostatic field		Lecture		
	Conductors and insulators, conductors in		PPT and		
	electric field. Capacitance and capacitors,		Group		
	calculating capacitance in a parallel plate		Discussion		
	capacitor, parallel plate capacitor with				
	dielectric, dielectrics: an atomic view. Energy	r			
	stored in a capacitor, Dielectric and Guass's				
	law				
5	Electric currents and current density:	7	Black board/ Lecture	6 th to 8th week	
	Electric currents and current density.		PPT		
	Electrical conductivity and Ohm's				
	law. Physics of electrical conduction,				
	conduction in metals and semiconductors,				

|| Jai Sri Gurudev ||

Sri Adichunchanagiri First Grade College Channarayapatna.

DEPARTMENT OF PHYSICS

LESSON PLAN FOR THE ACADEMIC YEAR 2023-24

B.Sc Semester Programme: B.Sc (NEP)

Course/Paper Name: Paper – 7: PHY C14-T: Elements of Condensed Matter & Nuclear Physics

	Semester: VI		Total Hours:56		
SI.	Topic covered		Methodology/pedagogy	Date	
No.		No. of Lecture Hours			
1	Crystal systems and X-rays: Crystal structure: Space Lattice, Lattice translational vectors, Basis of crystal structure (Definition only), Types of unit cells: primitive, non-primitive cells (Definition). Seven crystal system (Mention), Coordination numbers (Definition), Miller Indices (procedure), Expression for inter planner spacing. X Rays: Properties of X rays, production by Coolidge tube, Continuous and characteristic X-ray spectra; Moseley's law (Statement & significance). X-Ray diffraction, Bragg's law (Statement & proof). Crystal diffraction: Bragg's X-ray spectrometer (construction & working). Free electron theory of metals: Classical free electron model (Drude- Lorentz model- qualitative), expression for electrical and thermal conductivity, Weidman-Franz law, Failure of classical free electron theory (assumptions), Fermi level and Fermi energy (definitions only), Fermi-Dirac distribution function (expression for probability distribution F(E), statement only); expression for Fermi energy at absolute zero temperature. Density of states for free electrons (statement only, no	12	Black board& Lecture PPT	1 st and 2 nd week	

	lattice vibration and concept of Phonons			
	Specific bests of solids, classical theory			
	(Delaws & Detit's lass			
	(Dulong & Petit's law -			
	limitations) Einstein s and Debye s			
	theory of specific neats (derivations).			
2	Hall Effect in metals (statement only).			
2	Magnetic Properties of Matter: Review			
	of basic formulae: Magnetic intensity,			
	magnetic induction,			
	permeability, magnetic susceptibility,			
	magnetization (M) (definitions only),			
	Classification of Dia, Para, and ferro			and Lard 1
	magnetic materials; Langevin Classical	10	Black board &	2 ^{an} and 3 ^{an} week
	Theory of dia – and Paramagnetism.	12	Lecture PPT	
	Curie's law (statement only),			
	Ferromagnetism and Ferromagnetic			
	Domains (qualitative). Discussion of B-H			
	Curve, Hysteresis and Energy			
	Loss Hard and Soft magnetic materials			
	(definition and examples)			
	Dielectrics: Static dielectric constant			
	polarizability (electronic, jonic and			
	orientation qualitative) calculation of			
	Lorentz field (derivation) Clausius			
	Mosotti equation (derivation), Clausius-			
	loss Piezo electric effect (Defn			
	examples and applications)			
	Superconductivity: Definition			
	Superconductivity. Definition,			
	Experimental results – Zero resistivity			
	and Critical temperature– The critical			
	and type II superconductors			
2	Concret Properties of Nuclei:			
3	General Properties of Nuclei.			
	nucleus (mass radii charge dereite)			
	hinding analysis factore of his 1			
	omaing energy, main leatures of binding			
	energy versus mass number curve,			
	angular momentum, parity, magnetic			
	moment, electric moments (w.r.t.			
	nucleus).			
	Radioactivity decay: Radioactivity:			
	definition of radioactivity, half-life (defn),	12	Black board &	3 rd week
	mean life(defn), theory of		Lecture DDT	5 WOOK
	radioactivity, equilibrium (secular &			
	transient equilibrium).			
	(a) Alpha decay: basics of α -decay			
	processes, theory of α emission (brief),			
	Gamow factor, Geiger-Nuttall law.			
	(b) β -decay: basics of β -decay (β - & β +),			

	energy kinematics for β-decay (β ray spectra), positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays' emission & kinematics, internal conversion (Definition).			
4	Interaction of Nuclear Radiation with matter: Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, Energy loss due to ionization (quantitative description of Bethe Block formula), energy loss of electron, introduction of Cerenkov radiation Detector for Nuclear Radiations: Gas detectors: GM Counter (Construction, working and characteristics). Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors qualitative only, Accelerators: Cyclotrons (construction, working and theory) and Synchrotrons (Principle)	12	Black board & Lecture PPT	4 th week
	Practical's-Paper 7	4 hrs/week	Demonstration	1experiment/week

|| Jai Sri Gurudev || Sri Adichunchanagiri First Grade College Channarayapatna

DEPARTMENT OF PHYSICS

LESSON PLAN FOR THE ACADEMIC YEAR 2023-24

Programme: B.Sc. (NEP)

Course/Paper Name: PHY C16-T: Electronic Instrumentation & Sensors

	Semester: VI	Total Hours:56		
Sl.	Topic covered		Methodology/pedagogy	Date
No.		No. of Lecture Hours		
1	Power supply : AC power and its characteristics, Single phase and three phase, Need for DC power supply and its characteristics, line voltage and frequency, Rectifier bridge, Filters: Capacitor and inductor filers, L-section and π -section filters, ripple factor, electronic voltage regulators, stabilization factor, voltage regulation using ICs. Basic electrical measuring instruments Cathode ray oscilloscope- Block diagram, basic principle, electron beam, CRT features, signal display. Basic elements of digital storage oscilloscopes. Basic DC voltmeter for measuring potential difference, Extending Voltmeter range, AC voltmeter using rectifiers, Basic DC ammeter, requirement of a shunt, Extending of ammeter ranges.	12	Black board& Lecture PPT	1 st and 2 nd week
2	Wave form generators and Filters Basic principle of standard AF signal generator: Fixed frequency and variable frequency, AF sine and square wave generator, basic Wein-bridge network and oscillator configuration, Triangular and saw tooth wave generators, circuitry and waveforms. Passive and active filters. Fundamental theorem of filters, Proof of the theorem by considering a symmetrical Tnetwork. Types of filters, Circuitry and Cut-off frequency and frequency response of Passive (RC) and	12	Black board & Lecture PPT	3 nd to 7th week

[
	(op-amp based) filters: Low pass, high pass			
	and band pass.			
3	Data Conversion and display			
	Digital to Analog (D/A) and Analog to Digital			
	(A/D) converters – A/D converter with pre-			
	amplification and			
	filtering. D/A converter - Variable resistor			
	network, Ladder type (R-2R) D/A converter,			
	Op-amp based D/A			4
	converter	12	Black board &	8 th week
	Digital display systems and Indicators-		Lecture PPT	
	Classification of displays Light Emitting			
	Diadas (LED) and Liquid			
	Created Display (LCD) Structure and working			
	Crystal Display (LCD) – Structure and working.			
	Data Transmission systems – Advantages and			
	disadvantages of digital transmission over			
	analog transmission,			
	Pulse amplitude modulation (PAM), Pulse time			
	modulation (PTM) and Pulse width modulation			
	(PWM)- General			
	principles. Principle of Phase Sensitive			
	Detection (PSD			
4	Transducers and sensors			
	Definition and types of transducers. Basic			
	characteristics of an electrical transducer,			
	factors governing the			
	selection of a transducer, Resistive transducer-			
	potentiometer, Strain gauge and types (general			
	description).			
	Resistance thermometer-platinum resistance			
	thermometer			de de
	Thermistor Inductive Transducer-general			9^{th} to 13^{th}
	principles Linear Variable Differential	12	Black board &	week
	Transducar (IDVT) principle	12	Lecture DDT	
	and construction Consolitive Transducer Diago			
	and construction, Capacitive Transducer, Plezo-			
	electric transducer, Photoelectric transducer,			
	Photovoltaic cell,			
	photo diode and phototransistor – principle and			
	working			
5	Practical's-Paper 8	4 hrs/week	Demonstration	1 experiment/
				week