
Chapter 2: Molecular Structure and Bonding 
Bonding Theories  

1. VSEPR Theory 
2. Valence Bond theory (with  hybridization) 
3. Molecular Orbital Theory ( with molecualr orbitals) 

To date, we have looked at three different theories of molecular boning. They are the 
VSEPR Theory (with Lewis Dot Structures), the Valence Bond theory (with  
hybridization)  and Molecular Orbital Theory. A good theory should predict physical and 
chemical properties of the molecule such as shape, bond energy, bond length, and 
bond angles.Because arguments based on atomic orbitals focus on the bonds formed 
between valence electrons on an atom, they are often said to involve a valence-bond 
theory.   The valence-bond model can't adequately explain the fact that some molecules 
contains two equivalent bonds with a bond order between that of a single bond and a 
double bond. The best it can do is suggest that these molecules are mixtures, or 
hybrids, of the two Lewis structures that can be written for these molecules.  

This problem, and many others, can be overcome by using a more sophisticated model 
of bonding based on molecular orbitals. Molecular orbital theory is more powerful than 
valence-bond theory because the orbitals reflect the geometry of the molecule to which 
they are applied. But this power carries a significant cost in terms of the ease with which 
the model can be visualized.  
One model does not describe all the properties of molecular bonds. Each model 
desribes a set of properties better than the others. The final test for any theory is 
experimental data.  

Introduction to Molecular Orbital Theory  
The Molecular Orbital Theory does a good job of predicting elctronic spectra and 
paramagnetism, when VSEPR and the V-B Theories don't. The MO theory does not 
need resonance structures to describe molecules, as well as being able to predict bond 
length and energy. The major draw back is that we are limited to talking about diatomic 
molecules (molecules that have only two atoms bonded together), or the theory gets 
very complex.  

The MO theory treats molecular bonds as a sharing of electrons between nuclei. Unlike 
the V-B theory, which treats the electrons as localized baloons of electron density, the 
MO theory says that the electrons are delocalized. That means that they are spread out 
over the entire molecule.  
Forming Molecular Orbitals  
Molecular orbitals are obtained by combining the atomic orbitals on the atoms in the 
molecule. Consider the H2 molecule, for example. One of the molecular orbitals in this 
molecule is constructed by adding the mathematical functions for the two 1s atomic 
orbitals that come together to form this molecule. Another orbital is formed by 
subtracting one of these functions from the other, as shown in the figure below.  



 

One of these orbitals is called a bonding molecular orbital because electrons in this 
orbital spend most of their time in the region directly between the two nuclei. It is called 
a sigma ( ) molecular orbital because it looks like an s orbital when viewed along the 
H-H bond. Electrons placed in the other orbital spend most of their time away from the 
region between the two nuclei. This orbital is therefore an antibonding, or sigma star (
*), molecular orbital.  

 

The  bonding molecular orbital concentrates electrons in the region directly between 
the two nuclei. Placing an electron in this orbital therefore stabilizes the H2 molecule. 
Since the * antibonding molecular orbital forces the electron to spend most of its time 
away from the area between the nuclei, placing an electron in this orbital makes the 



molecule less stable.  
The MO Theory has five basic rules:  

1. The number of molecular orbitals = the number of atomic orbitals combined 
2. Of the two MO's, one is a bonding orbital (lower energy) and one is an anti-

bonding orbital (higher energy) 
3. Electrons enter the lowest orbital available 
4. The maximum # of electrons in an orbital is 2 (Pauli Exclusion Principle) 
5. Electrons spread out before pairing up (Hund's Rule) 

Calculating Bond Order  

In molecular orbital theory, we calculate bond orders by assuming that two electrons in 
a bonding molecular orbital contribute one net bond and that two electrons in an 
antibonding molecular orbital cancel the effect of one bond. We can calculate the bond 
order in the O2 molecule by noting that there are eight valence electrons in bonding 
molecular orbitals and four valence electrons in antibonding molecular orbitals in the 
electron configuration of this molecule. Thus, the bond order is two.  

 
Although the Lewis structure and molecular orbital models of oxygen yield the same 
bond order, there is an important difference between these models. The electrons in the 
Lewis structure are all paired, but therecould be unpaired electrons in the molecular 
orbital description of a molecule. As a result, we can test the predictions of these 
theories by studying the effect of a magnetic field on certain molecules.  

Homo Nuclear Diatmic Molecules  
Molecular Orbitals of the Second Energy Level (1s and 2s only)  
Molecular Orbitals for Period 1 Diatomic Molecules  
Electrons are added to molecular orbitals, one at a time, starting with the lowest energy 
molecular orbital. The two electrons associated with a pair of hydrogen atoms are 
placed in the lowest energy, or  bonding, molecular orbital, as shown in the figure 
below. This diagram suggests that the energy of an H2 molecule is lower than that of a 
pair of isolated atoms. As a result, the H2 molecule is more stable than a pair of isolated 
atoms.  

 

We can put the Molecular Orbital Theory to use!! Would you predict that dilithium or 
diberylium is more likely to form, based on the diagram below?  



The answer is dilithium because it has a bond order of 1 which is stable and diberylium 
has a BO of 0 which is unstable and therefore will not form.  

Using the Molecular Orbital Model to Explain Why  He2MoleculeDo Not Exist  
This molecular orbital model can be used to explain why He2 molecules don't exist. 
Combining a pair of helium atoms with 1s2 electron configurations would produce a 
molecule with a pair of electrons in both the  bonding and the * antibonding molecular 
orbitals. The total energy of an He2 molecule would be essentially the same as the 
energy of a pair of isolated helium atoms, and there would be nothing to hold the helium 
atoms together to form a molecule.  

The fact that an He2 molecule is neither more nor less stable than a pair of isolated 
helium atoms illustrates an important principle: The core orbitals on an atom make no 
contribution to the stability of the molecules that contain this atom. The only orbitals that 
are important in our discussion of molecular orbitals are those formed when valence-
shell orbitals are combined.  
Molecular Orbitals for Period 2 Diatomic Molecules  and Li2 and  Be2 (does not exsit)  

 

Homo Nuclear Diatmic Molecules  
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Molecular Orbitals of the Second Energy Level (2s and 2p together) Molecular 
Orbitals of the Second Energy Level  

The 2s orbitals on one atom combine with the 2s orbitals on another to form a 2s 
bonding and a 2s* antibonding molecular orbital, just like the 1s and 1s* orbitals 
formed from the 1s atomic orbitals. If we arbitrarily define the Z axis of the coordinate 
system for the O2 molecule as the axis along which the bond forms, the 2pz orbitals on 
the adjacent atoms will meet head-on to form a 2p bonding and a 2p* antibonding 
molecular orbital, as shown in the figure below. These are called sigma orbitals because 
they look like s orbitals when viewed along the oxygen-oxygen bond.

  
   
   

The 2px orbitals on one atom interact with the 2px orbitals on the other to form molecular 
orbitals that have a different shape, as shown in the figure below. These molecular 
orbitals are called pi ( ) orbitals because they look like p orbitals when viewed along the 
bond. Whereas  and * orbitals concentrate the electrons along the axis on which the 
nuclei of the atoms lie,  and * orbitals concentrate the electrons either above or below 
this axis.  

The 2px atomic orbitals combine to form a x bonding molecular orbital and a x* 
antibonding molecular orbital. The same thing happens when the 2py orbitals interact, 
only in this case we get a y and a y* antibonding molecular orbital. Because there is no 
difference between the energies of the 2px and 2py atomic orbitals, there is no 
difference between the energies of the x and y or the x* and y* molecular orbitals.  



The interaction of four valence atomic orbitals on one atom (2s, 2px, 2py and 2pz) with a 
set of four atomic orbitals on another atom leads to the formation of a total of eight 
molecular orbitals: 2s, 2s*, 2p, 2p*, x, y, x*, and y*.  
There is a significant difference between the energies of the 2s and 2p orbitals on an 
atom. As a result, the 2s and *2s orbitals both lie at lower energies than the 2p, 2p*, x,

y, x*, and y* orbitals. To sort out the relative energies of the six molecular orbitals 
formed when the 2p atomic orbitals on a pair of atoms are combined, we need to 
understand the relationship between the strength of the interaction between a pair of 
orbitals and the relative energies of the molecular orbitals they form.  
Because they meet head-on, the interaction between the 2pz orbitals is stronger than 
the interaction between the 2px or 2py orbitals, which meet edge-on. As a result, the 2p 
orbital lies at a lower energy than the x and y orbitals, and the 2p* orbital lies at 
higher energy than the x* and y* orbitals, as shown in the figure below.  

 

Unfortunately an interaction is missing from this model. It is possible for the 2s orbital on 
one atom to interact with the 2pz orbital on the other. This interaction introduces an 
element of s-p mixing, or hybridization, into the molecular orbital theory. The result is a 
slight change in the relative energies of the molecular orbitals, to give the diagram 
shown in the figure below. Experiments have shown that O2 and F2 are best described 
by the model in the figure above, but B2, C2, and N2 are best described by a model that 
includes hybridization, as shown in the figure below.  
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Construct a Molecular orbital diagram for the O2 molecule.  

There are six valence electrons on a neutral oxygen atom and therefore 12 valence 
electrons in an O2 molecule. These electrons are added to the diagram in the figure 
below, one at a time, starting with the lowest energy molecular orbital.  
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Because Hund's rules apply to the filling of molecular orbitals, molecular orbital theory 
predicts that there should be two unpaired electrons on this molecule  one electron 
each in the x* and y* orbitals.  

When writing the electron configuration of an atom, we usually list the orbitals in the 
order in which they fill.  

Pb: [Xe] 6s2 4f14 5d10 6p2
  

We can write the electron configuration of a molecule by doing the same thing. 
Concentrating only on the valence orbitals, we write the electron configuration of O2 as 
follows.  

O2: 2s
2

2s*
2

2p
2

x
2

y
2

x*
1

y*
1
  

Molecular Orbital diagram fro N2  

 
Bond Order  

The number of bonds between a pair of atoms is called the bond order. Bond orders 
can be calculated from Lewis structures, which are the heart of the valence-bond model. 
Oxygen, for example, has a bond order of two.  

 
When there is more than one Lewis structure for a molecule, the bond order is an 
average of these structures. The bond order in sulfur dioxide, for example, is 1.5  the 
average of an S-O single bond in one Lewis structure and an S=O double bond in the 
other.  

 



In molecular orbital theory, we calculate bond orders by assuming that two electrons in 
a bonding molecular orbital contribute one net bond and that two electrons in an 
antibonding molecular orbital cancel the effect of one bond. We can calculate the bond 
order in the O2 molecule by noting that there are eight valence electrons in bonding 
molecular orbitals and four valence electrons in antibonding molecular orbitals in the 
electron configuration of this molecule. Thus, the bond order is two.  

 
Although the Lewis structure and molecular orbital models of oxygen yield the same 
bond order, there is an important difference between these models. The electrons in the 
Lewis structure are all paired, but there are two unpaired electrons in the molecular 
orbital description of the molecule. As a result, we can test the predictions of these 
theories by studying the effect of a magnetic field on oxygen.  

Atoms or molecules in which the electrons are paired are diamagnetic  repelled by 
both poles of a magnetic. Those that have one or more unpaired electrons are 
paramagnetic  attracted to a magnetic field. Liquid oxygen is attracted to a magnetic 
field and can actually bridge the gap between the poles of a horseshoe magnet. The 
molecular orbital model of O2 is therefore superior to the valence-bond model, which 
cannot explain this property of oxygen.  
Look at the following MO diagrams for some of the period two elements. Can you tell 
which molecules are paramagnetic? Which molecules have the highest bond energy, 
which has the lowest? Rank single, double, and triple bonds in order of bond energy 
and bond length. (hint a BO of 1 is a single bond, 2 a double...)  
Delocalized Bonding  
Finaly, it was mentioned earlier that the MO Theory did not need resonance structures 
to explain anything. Because the MO theory holds that electrons are not held to only 
one position. Instead they are spread across the entire molecule. Below is a picture of 
Benzene and Ozone. You can see that rather than having two resonance structures, we 
can picture one structure with the electrons dispersed over the entire molecule.  
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Molecular Orbitals for Heteronuclear Diatomic Molecules  

 
The most striking molecular orbital difference between a heteronuclear diatomic, such 
as HF, and the homonuclear diatomics is that the orbitals are no longer have equally 
density on each atom.  
 Note that the "1-sigma" and "2-sigma" molecular orbitals of Hydrogen Fluoride are 
mostly derived from the Fluorine 2s and 2p atomic orbitals respectively. Qualitatively, 
the high fluorine character of these orbitals is a consequence of the high 
electronegativity of fluorine as compared to hydrogen. Mathematically, the molecular 
orbitals have large coefficients on Fluorine and small coefficients on Hydrogen. The 1 pi 
orbitals are non-bonding and Fluorine 2p in character. Finally, the anti-bonding "3-
sigma" orbital is primarily H 1s in character.  
 The use of nodes to give a general idea of the energy ordering still works. "1-sigma" 
has no nodes, "2-sigma" and "1-pi" have one node, and "3-sigma" has two nodes.  
Carbon monoxide CO molecular orbital diagram

  



Iodine monochloride ICl molecular orbital diagram  

 
 

The Isolobal Analogy  

Extension of Valence Bond and Mo;ecualr Orbital theory to Complex Molecules:  

Introduction  
Different groups of atoms can give rise to similar shaped fragments. For example,  

the C-H group and the P atom have 5 electrons and can contribute 3 electrons to a cluster,  

C-H has 4+1 electrons and uses 2 electrons for the C-H bond  

P has 5 electrons and uses 2 electrons for a lone pair  

Both fragments are 3 electrons short of making maximum use of their 4 valence orbitals (s and 

3 p) by achieving an octet. The clusters C4H4 or (CH)4 (known as tetrahedrane) and P4 have the 

same number of cluster electrons and therefore adopt the same shape:  

 

The organometallic fragment Co(CO)3 has 15 electrons:  

Co has 9 valence electrons and each CO donates 2e to the metal  

The fragment is 3 electrons short of the stable electron count for an organometallic fragment of 

eighteen Eighteen electrons corresponds to making maximum use of the 9 valence orbitals of the 

transition metal (s + 3 p and 5 d). It can achieve 18 electrons by sharing 3 electrons to make 3 

covalent bonds. The Co(CO)3 fragment thus has the same requirements as the C-H unit and the P 



atom. The cluster [Co(CO)3]4 thus also has the same tetrahedral shape as that shown by C4H4 and 

P4. It is also possible to swap the three fragments around:  

 

B and C are more conventionally thought of as (
3
-P)[CoCO)3]3 and (

3
-C3H3)Co(CO)3 

respectively but this hides the structural and electronic links between all these clusters.  

The similarity between these fragments and between other groups of fragments has been 

investigated in detail by Roald Hoffmann. Fragments are deemed to be isolobal if  

"the number, symmetry properties, approximate energy and shape of the frontier orbitals and the 

number of electrons in them are similar"  
(R. Hoffmann, Angew. Chem. Int. Ed. Engl., 21, 711, 1982) 

The isolobal relationship is symbolized by a double-headed arrow with a tear-drop,  

 

The isolobal analogy relates the orbitals and bonding in inorganic, organometallic and cluster 

chemistry to that in organic and main group chemistry. The utility of the isolobal analogy is that 

one should be able to replace replace a (transition metal) MLn fragment in a molecule with the 

isolobal (main group) AHn fragment, and vice versa, to produce new molecules with very similar 

bonding.  

Generating isolobal fragments 

Main group fragments can be generated by starting from methane, 1 (or any molecule obeying 

the octet rule). Homolytic cleavage of a C–H bond generates the methyl radical, 1a,, which has 

one frontier orbital pointing towards the missing hydrogen with one electron in it. Homolytic 

cleavage of a second C–H gives methylene, 1b, which has too singly occupied hybrids pointing 

towards the two vacant hydrogen positions. Removal of a third hydrogen gives methine, 1c, with 

three singly occupied hybrids.  

http://almaz.com/nobel/chemistry/1981b.html


 

The transition metal fragments are generated in an analogous way. For example, from the 

starting point of CrL6, 2, where L is a two electron donor such as CO, (or any molecule obeying 

the eighteen electron rule such as 3), the fragments 2a, 2b and 2c are generated by successive 

homolytic cleavage of M–L bonds on one octahedral face. As L is a two-electron donor, 

homolytic cleavage of CrL6 gives CrL5– and L+. To remove the charge, the metal is then 

replaced by Mn (the element one to the right in the 3d series):  

 

Isolobal scheme 
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1c   2c   3c   4c 
  

As long as the electron count is maintained or consistent changes are made, the metal or main 

group element can be substituted. Thus,  

   

CH3 

 

Me3Sn 

 

Mn(CO)5 

 

Fe(PPh3)5
+
 

 

Mo(CO)5
–
 

                  

CH3
+
 

 

BH3 

 

Mn(CO)5
+
 

 

Cr(CO)5 

 

Rh(PPh3)3
+
 

                  

CH3
–
 

 

NH3 

 

Mn(CO)5
–
 

 

Fe(CO)5 

 

Rh(CO)5
+
 

It should be noted that the main use of the isolobal analogy is in generating alternative fragments 

in molecules. The geometry of the fragment in a molecule not as an isolated species is important. 

Thus, CH3 and BH3 are considered as pyramidal (not planar) species and Cr(CO)5 is considered 

as a square-based pyramid (not trigonal bipyramid).  

Applications of Isolobility 

The isolobal analogy between CH3 and d
7
 MnL5 implies similar bonding in the following 

compounds:  



 

The isolobal relationship of CH2, with Fe(CO)4 generates the compounds illustrated below. The 

transition metal molecule has been drawn as a metallocyclopropane. A more common 

description is to consider it as an ethene complexes, (2–C2H4)Fe(CO)4. The isolobal 

relationship shows that cyclopropane itself can be consider as (2–C2H4)CH2.  

 

Other known compounds generated using this relationship include:  

 

 

Here are some common isolobal fragments  

Molecular orbital theory  

Introduction 

Modern chemistry has depended upon the use of models of increasing comlexity. Atoms can be 

represented as spheres connected by cyclinders or sticks. In order to understand the mechanism 

of many reactions, Lewis Theory, developed by Robinson and Ingold, can provide a succesful 

answer.  

Lewis Theory uses curly arrows to denote electron migration during a chemical reaction and has 

led to a greater understanding of the factors controlling chemical reactions.  

Pauling with others, developed Resonance Theory, which provided the rationale to an all-

embracing orbital theory. The use of "canonical forms" and "resonance hybrids", alonng with 

extensive use of curvy arrows has provided the fundamental background to modern organic 

theory, but for eg. Diels-Alder and pericyclic reactions, the curly arrow format is not very clear 

and in some instances the reactions are described as no-machanism reactions. Woodward and 

Hoffmann showed that by examining the interaction of the frontier molecular orbitals (ie. the 

Highest Occupied, HOMO and Lowest Unoccupied, LUMO) both the regio- and 



stereospecificity could be accountred for.  

Woodward and Hoffmann work was assimilated into general organic reaction theory.  

3.7 An introduction to the theory of Linear Combination of Atomic Orbitals (LCOA)  
A theory which treats bonding as an over lapping of ligand orbitals with those of the central 

atom.  

 By summing the original wavefunctions for the bonding orbitals in constituent species, "hybrid" 

molecular orbitals of the compound can be generated. These new orbitals have an intermediate 

character between the original , , and  orbitals (if available) in the outer energy level, and 

produce additional bond sites. The hybridization is named on the basis of the orbitals involved, 

and the hybrid wavefunction is the (renormalized) sum of the individual wavefunctions, where 

each addition may be with an arbitrary sign. The composite wavefunctions with differing signs 

are orthogonal, since  

   

 

 

 

(1) 

But   

 

(2) 

so   

 

(3) 

The simplest example is -hybridization. There are two possible combinations,  

 
 

 

(4) 

 
 

 

(5) 

where the wavefunctions on the right are the solutions to Schrödinger's equation, and the 

normalization constants are needed so that the hybrid wavefunction is normalized.  has the 

electron density is greatest between the two nuclei. It will therefore bind the nuclei together, and 

is called a bonding molecular orbital.  has the electron density greatest on the sides of the 

nuclei. It will therefore pull the nuclei apart, and is called an antibonding molecular orbital. In 

some instances, a nonbonding molecular orbital may be generated for which the electron density 

is uniformly distributed between and on the sides of the nuclei. A measure of the stability of a 

compound based on the occupancy of its molecular orbitals is given by the body order.  



 

 

More complicated bonding interactions will involve , , and  orbitals. For a homonuclear 

diatomic compound with hybrid orbitals constructed from , , and p orbitals, the 

molecular orbital have the following form.  

 
For heteropolar molecules or more complicated systems, the molecular orbital energy diagram 

can be quite complex. The molecular orbitals for the CO2 (O1=C=O2) molecules are given by, in 

order of increasing energy  

 

 

 

 

 

 

 

 

 

 

 

 



There are 12 electrons in the valence shell, so the levels are filled through the nonbonding 

orbitals. The compound is therefore stable, with a bond order of 4. For an even more complicated 

example, consider benzene. For certain compounds, electrons are delocalized. Such compounds 

have an extremely large number of molecular orbitals. The result, as the number of levels goes to 

infinity, is a band of bonding orbitals, and band of antibonding orbitals (known as the conduction 

band, since free electrons will exist here), possibly overlapping or possibly separated by a gap. In 

metals, the levels overlap, and the bonding orbitals are completely filled. In semiconductors, the 

levels are separated by a small "forbidden zone." The addition of a small amount of energy will 

therefore remove an electron from the filled bonding orbital, through the forbidden zone, and 

into the conduction band.  

Atomic and Molecular Orbitals 

By sharing electron, molecules can form bonds, and it is possible to regard the sharing of two 

electrons by two atoms as constituting a chemical bond. Atoms can share one, two or three 

electrons (forming single, double and triple bonds).  

A hydrogen atom consists of a nucleus (a proton) and an electron. It is not possible to accurately 

determine the position of the electron, but it is possible to calculate the probability of findng the 

electron at any point around the nucleus. With a hydrogen atom the probability distribution is 

spherical around the nucleus and it is possible to draw a spherical boundary surface, inside which 

there is a 95% possibility of finding the electron. The electron has a fixed energy and a fixed 

spatial distribution called an orbital. In the helium atom there are two electrons associated with 

the helium nucleus. The electrons have the same spatial distribution and energy (ie. they occupy 

the same orbital), but they differ in their spin (Pauli exlusion principle). In general: electrons in 

atomic nuclei occupy orbitals of fixed energy and spatial distribution, and each orbital only 

contains a maximum of two electrons with anti-parallel spins.  

In physics, periodic phenomena are associated with a "wave equation", and in atomic theory the 

relevant equation is called the "Schrödinger Equation". The wave equation predicts discrete 

solutions in one dimension for a particle confined to a box with infinite walls, The solutions can 

be shown as in the figure below:  



 

1 - 4 represent solutions of increasing energy. In three dimensions, the equation determines the 

energy and defines the spatial distribution of each electron. Solutions of the wave equations in 

three-dimensions allows calculation of the "shape" of each orbital. The first five solutions of the 

wave equation for an electron associated with a proton can be shown in the figure below:  

 

In the hydrogen atom, the 1s atomic orbital has the lowest energy, while the remainder (2s, 2px, 

2py and 2pz) are of equal energy (ie.degenerate), but for all other atoms, the 2s atomic orbital is 

of lower enegry than the 2px, 2py and 2pz orbitals, which are degenerate.  

In atoms, electrons occupy atomic orbitals, but in molecules they occupy similar molecular 

orbitals which surround the molecule. The simplest molecule is hydrogen, which can be 

considered to be made up of two seperate protons and electrons. There are two molecular orbitals 



for hydrogen, the lower energy orbital has its greater electron density between the two nuclei. 

This is the bonding molecular orbital - and is of lower energy than the two 1s atomic orbitals of 

hydrogen atoms making this orbital more stable than two seperated atomic hydrogen orbitals. 

The upper molecular orbital has a node in the electronic wave function and the electron density is 

low between the two positively charged nuclei. The energy of the upper orbital is greater than 

that of the 1s atomic orbital, and such an orbital is called an antibonding molecular orbital.  

Normally, the two electrons in hydrogen occupy the bonding molecular orbital, with anti-parallel 

spins. If molecular hydrogen is irradiated by ultra-violet (UV) light, the molecule may absorb the 

energy, and promote one electron into its antibonding orbital (
*
), and the atoms will seperate. 

The energy levels in a hydrogen molecule can be represented in a diagram - showing how the 

two 1s atomic orbitals combine to form two molecular orbitals, one bonding () and one 

antibonding (
*
). This is shown below - by clicking upon either the  or 

*
 molecular orbital in 

the diagram - it will show graphically in a window to the right:  

 

3.8 Homonuclear diatomic molecules 

A diatomic hydrogen molecule fills the  orbital, and so has a bond order of 1 and is stable.  

 

A diatomic helium molecule fills both the  and  orbitals, so it has a bond order of zero 

and is not stable.  

 
Diatomic molecules H2 and He2  

The probability plot for 2
2
 is also shown in Figure 4. What would be its equation? (The 



equivalent of equation 3) What do you notice about the electron density between the nuclei as 

compared to two individual hydrogen atoms simply placed side by side?  

Further insight into the bonding of HA and HB can be obtained by considering the energies of the 

electrons in 1 and 2 compared to their energies in the non-interacting atoms. This can be done 

by plugging the LCAO wave functions for the molecule back into the appropriate Scrödinger 

equation (just as it can be done for the individual atoms using the atomic wave functions). The 

results are shown in Figure 5, where 1 and 2 are sometimes renamed (1s) and *(1s), 

respectively, to indicate the type of molecular orbital and their parentage.  

 
These molecular orbitals are useful for any molecule, or molecule-ion, using only 1s orbitals for 

bonding. Several possibilities are: H2
+
, H2, H2

-
, H2

2-
, He2

+
 and He2. The positive molecule-ions 

are unstable, but have been detected in the gas phase under high energy conditions. The negative 

molecule-ions and He2 have not been observed.  

Nitrogen:  
 This molecule has ten electrons. The atomic orbitals combine to produce the following 

molecular orbital diagram:  



 
Here the 2g orbital is occupied by two electrons to give a total bond order of three. This 

corresponds well with the Lewis structure ( ), although the orbital approach tells us that 

there is one  and two .  

Oxygen:  
 This molecule has twelve electrons, two more than nitrogen - and these extra two are placed in a 

pair of degenerate g orbitals. The atomic orbitals combine to produce the following molecular 

orbital diagram:  



 
Comparison of the above energy level diagram wit hthat for nitrogen - you can see that the 2g 

level lies lower than u. Here, we are starting to fill the anti-bonding orbitals originating from the 

p orbital interactions and so the bond order decreases from three to two.  

The lowest energy arrangment (Hund's rule) - has a single electron, each with parallel spins, in 

each of the g
x
 and g

y
 orbitals. This produces a paramagnetic molecule, with a double bond and 

has two unpaired electrons.  

3.9 Heteronuclear diatomic molecules  
If the molecule is heteronuclear, the parent atomic orbitals will have different energy levels. The 

more easily ionized (less electronegative) atom will have the atomic orbital level closer to E = 0 

in the arrangement depicted below:  



 

The bonding molecular orbital has an energy and a wave function which approximates the more 

electronegative atom. The antibonding molecular orbital will have an energy and wavefunction 

which resembles that of the less electronegative atom. As an example, consider the molecule 

hydrogen chloride. The hydrogen 1s orbital (one electron) would be 1 and the chlorine 3p 

orbital that bonds with it (one electron) will be 2. The molecular orbital  will look very much 

like the chlorine 3p orbital and will end up holding both electrons, while the * orbital will look 

like the original H 1s orbital and will end up empty. Thus, the molecular orbital theory correctly 

represents H
+

Cl
-

. (Note that the above is a rather treatment because it ignores the possible 

involvement of the 3s orbital of Cl.)  

A2 Molecules  

Hydrogen Fluoride:  
 A simple diatomic molecule is Hydrogen fluoride. There are eight valence electrons which 

occupy four molecular orbitals. The two highest energy MO's are degenerate, are -type and 

have no electron density associated with the hydrogen atom, ie. they are Non-Bonding Orbitals 

(NBO) and in Lewis Theory are represented as two "Lone Pairs". Another important difference 

between Hydrogen Fluoride and previous molecules is that the electron density is not equally 

distributed about the molecule. There is a much greater electron density around the fluorine 

atom. This is because fluorine is an exremely electronegative element, and in each bonding 

molecular orbital, fluorine will take a greater share of the electron density.  

For the energy diagram and pictorial view of the orbitals - please see below:  



 

3.10 Bond properties in the molecular orbital formalism  
Bond Lengths and Covalent Radii  There are several points to be made here:  

Bond lengths are derived from the sums of covalent radii. The covalent radi can be obtained in 

the first instance by taking half the length of a homonuclear bond:  

dCl-Cl (in Cl2) = 1.988 Å therefore rCl = 0.99 Å  

dC-C (in diamond) = 1.54 Å therefore rC(single bond) = 0.77 Å  

Predicted dC-Cl = rC(single bond) + rCl = 0.99 + 0.77 = 1.76 vs actual 1.77 Å 

Naturally, the observed bond lengths will vary a little from compound to compound depending 

on the other atoms bonded to the two participating in the bond under consderation.  

The observed bond length will be a function of the bond order for example:  

dNN = 1.10 Å      dN=N = 1.25 Å      dN-N = 1.45 Å 

Double- and triple-bond radii are approximately 0.87 and 0.78 times the single-bond radius.  

   

The single-bond covalent radius of an atom is influenced by the type of hybrids that it is using. 

The more p-character in the hybrid, the larger will be the radius:  

rC(sp
3
) = 0.77 Å      rC(sp

2
) = 0.73 Å      rC(sp) = 0.70 Å 

If the electronegativity of the bound atoms differs substantially, that is the bonds have substantial 

ionic character, then the bonds will be shorter than predicted by the covalent radii:  

In CF4 the C-F bondlength is 1.32 Å (predicted 1.44 Å)  

In SiF4 the Si-F bond length is 1.54 Å (predicted 1.81 Å)  

In SiF4 some of this shortening is said to involve -bonding between empty silicon d-orbital and 

filled fluorine p-orbitals.  

Overlap of Orbitals  
 Bonding overlap. All parts of the atomic orbitals which overlap each other have the same sign 



(colour). The electon density is raised in such areas of overlap by 21.2 relative to the simple 

sum: 1
2
 + 2

2
 which leads to an attractive component to the interation between the two atom 

concerned.  

Antibonding overlap. All overlapping parts of the atomic orbitals have opposite signs. A node 

is formed in such regions so the electron density goes to zero at the node. Such molecular 

orbitals, when occupied by electrons, contribute a repulsive component to the interaction 

between the two atoms concerned.  

Non-bonding overlap. If there some areas of overlap where the signs are the same and others 

where they are opposite, the net contribution of such a molecular orbital to the interaction 

between the two atoms would be zero. For this reason such molecular orbital combinations are 

not constructed.  

The , and  Notation  

The "bottom line" is that a -molecular orbital has no node which passes through all the nuclei 

involved, a -molecular orbital has one such node, and a -molecular obrbital has two such 

nodes.  

Molecular orbitals of polyatomic molecules  

3.11 The construction of molecular orbitals  

Orbitals for selected molecules  
This section illustrates pictorially molecular orbitals for several organic and inorganic molecules. 

If possible - the energy level diagram is included and clicking upon the relelvant level will 

generate the accompanying molecular orbital in the right-hand frame. Please choose from:  

3.12 Polyatomic molecules in general  

Saturated molecules  
       These are molecules in which all valence electrons are involved in the formation of single 

bonds. There are no non-bonded lone pairs. These molecules are generally less reactive than 

either electron-rich or electron-deficient species, with all occupied orbitals having relatively low 

energies.  

Water:  
 In the water molecule the highest occupied orbital, (1b1) is non-bonding and highly localized on 

the oxygen atom, similar to the non-bonding orbitals of hydrogen fluoride. The next lowest 

orbital (2a1) can be thought of as a non-bonding orbital, as it has a lobe pointing away from the 

two hydrogens. From the lower energy bonding orbitals, it is possible to see that oxygen also 

takes more than its "fair share" of the total electron density.  



 

Ammonia:  
Ammonia has two pairs of degenerate orbitals, one bonding and one antibonding, and like 

hydrogen fluoride and water has a non-bonding orbital (2a1). This highest occupied orbital has a 

lobe pointing away from the three hydrogens, and corresponds to a lone pair orbital localized 

upon the nitrogen, whereas the three lowest energy MO's lead to the description of the three N-H 

bonds of the Lewis structure. The lone pair is relatively high in energy, and is responsible for the 

well known Lewis base properties of ammonia.  



 

The next molecule in the series HF, H2O and H3N, is H4C (methane) - which was discussed 

earlier - and unlike the other three molecules has no non-bonding orbitals.  

Methane:  
 The valence molecular orbitals of methane are delocalized over the entire nuclear skeleton - that 

is, it is not easy to assign any one orbital to a particular C-H bond. It is possible to see how 

complex the orbital structure becomes with the increase in energy. Methane has four valence 

molecular orbitals (bonding), consisting of one orbital with one nodal plane (lowest occupied) 

and three degenerate (equal energy) orbitals that do have a nodal plane.  

For the energy diagram and pictorial view of the orbitals - please see below:  



 

Ethane:  
 The ethane molecule has fourteen valence electrons occupying seven bonding molecular 

orbitals. As can be seen from the energy diagram - four of the molecular orbitals occur as 

degenerate pairs. Like in methane - the molecular orbitals of ethane show increasing nodal 

structure with increasing orbital energy.  

For the energy diagram and pictorial view of the orbitals - please see below:  



 
A Linear Triatomic - BeH2  



 

The central atom is Be and the ligands are the H's.  

The atomic energy levels are shown under Be and 2H in the figure above. Note the hydrogen 

orbitals are shown to have a lower energy than the beryllium orbitals because the non-metal, 

hydrogen, is more electronegative (harder to ionize than the metal, Be.  

There are two linear combinations of the two hydrogen 1s orbitals:  

1 = 1/2(1sHa + 1sHb)      and      2 = 1/2(1sHa - 1sHb)  

 
   

  The energy levels that these combinations might have is shown below 2H(combos).  

   

   

   

   



The beryllium 2s orbital is of the correct symmetry to form combinations with 1 and the Be 2p 

orbital directed along the internuclear axis (say z) is of the correct symetry to form combinations 

with 2:  

1 = 1/2(1 + 2sBe)      and      3 = 1/2(1 - 2sBe)  

 
 2 = 1/2(2 + 2pzBe)      and      4 = 1/2(2 - 2pzBe)  

 
 The beryllium 2px and 2py orbitals do not have matching symmetry ligand combinations.  

  These molecular orbitals, including the localized 2px and 2py orbitals, are shown under BeH2 

on the energy level diagram.  

  As shown on the energy level diagram, the 4 valence electrons electrons are found in 1 and 2 

molecular orbitals which are both bonding 3-centre orbitals.The bond order for one Be-H 

connection will be:  

B.O   =   ((# bonding electrons)/2)/(# of 2-centre bonds)   =   (4/2)/(2)   =   1  

An Electron Deficient Molecule witn Bridging Hydrogen - Diborane, B2H6  
 

Diborane has the structure shown on the right. At first sight, it seems to have 8 

bonds, but between the two boron atoms and the 6 hydrogen atoms, there are 

only 12 electrons - enough to make only 6 "conventional" 2-centre - 2-electron bonds.  

 The figure below shows how this situation is handled using molecular orbital theory:  



 
   

   

  On the left side of the diagram there is a modified valence bond diagram for the whole 

molecule. The various orbitals are colour-coded to the structural diagram in the centre of the 

diagram. Notice that the boron atoms are assigned sp
3
 hybridization based on their (predicted) 

approximately tetrahedral geometry. Although molecular orbital theory could be used to describe 

the bonding in the whole molecule, and without invoking hybridization in a separate step, here it 

is only used for the hydrogen bridges.  

   

  The molecular orbital energy level diagram on the right-hand side of the diagram treats only 

one of the two hydrogen bridges (red or purple). The orbitals used are: one sp
3
 hybrid on each 

boron and the bridging hydrogen's 1s orbital. There are 2 electrons assigned to this system.  

   

  The boron atoms are considered to be ligating hydrogen, so their orbitals are first combined to 

give two linear combinations:  

1 = 1/2(sp
3
Ba + sp

3
Bb)      and      2 = 1/2(sp

3
Ba - sp

3
Bb)  

 

The hydrogen 1s orbital can be combined with 1 yielding a bonding and an antibonding 

combination. The other ligand combination, 2 is not used.  



 = 1/2(1 + 1sH)      and       = 1/2(1 - 1sH)  

 
   

   

  The two electrons end up in the  orbital delocalized over the entire bridge, i.e. contributing to 

2 connections, so the bond order in any one of the B-Hbridging bonds is &frac12;. (The B-Hterminal 

bonds are "normal" 2-electron - 2-centre Lewis bonds.)  

Phosphorus Pentachloride - Without Using Those 3d Orbitals!  
 In pure valence bond theory, the bonding in PF5 requires the use of the 3d orbitals of phosphorus 

to allow the creation of 5 normal 2-centre - 2-electron bonds. It is possible to avoid this strategy 

(which has been challenged as unrealistic) by using three-centre bonding described by molecular 

orbital theory. Valence bond theory accounts for the bonding of the fluorines in equatorial sites 

by employing sp
2
 hybrids on phosphorus. The axial system only is described by molecular 

orbital theory. The diagram below sets up the situation:  

 
The 2p orbitals oriented along the molecular axis on the two fluorines are first combined: 

 

1 = 1/2(2pFa + 2pFb)      and      2 = 1/2(2pFa - 2pFb)  

The diagram below shows the combinations graphically.  



 
   

   

  The 3p orbital of phosphorus (remaining unhybridized) can be combined with the ligand 

combination 1 to yeld a bonding and and antibonding combination. The ligand combination, 2, 

remains unused in this simplified treatment.  

 = 1/2(1 + 3pP)      and       = 1/2(1 - 3pP)  

The diagram below show these combinations graphically.  

 
   

The diagram below shows the energy levels in the axial orbital system only. There are two 

electrons in the bonding orbital () which leads to a bond order of &frac12; in each phosphorus - 

fluorine "connection", since the two non-bonding electrons (in 2) do not contribute. Therefore, 

the axial bonds are expected to be weaker than the equatorial bonds. This is supported by the 

experimental evidence.  



 
3.13 Molecular shape in terms of molecular orbitals  

The Delocalized Approach to Bonding: Molecular Orbital Theory  
 In molecular orbital theory, molecular orbital wavefunctions are constructed by taking linear 

combinations of atomic orbitals. If there are only two atoms involved, this means the sum and 

the difference of the atomic orbital wavefunctions. If there are more than two atoms involved, 

the combinations are formed in a more complicated way, and usually the symmetry properties of 

the molecular or molecular ion are used to simplify the problem. (Of course, this does not 

simplify much if the mathematical theory which covers symmetry (group theory) has not been 

covered!) The first part deals with diatomic species. This is followed by several more 

complicated sample systems.  

Molecules and Ions with double bonds  
In molecules where the number of bonding electron pairs exceeds the number of unions between 

atoms, the extra electrons occupy higher energy molecular orbitals than the orbitals found in 

molecules where the number of bonding electron pairs equals the number of unions between 

atoms. These are double bonds, and the orbitals have a nodal plane containig the atoms sharing 

these -type orbitals.  

Ethene:  
 The simplest alkene is ethene. Its chemistry is dominated by two "frontier orbitals", that is the 

Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital 

(LUMO). For the ethene orbital energy diagram these are shown as CC for the HOMO, and 
*
CC 

for the LUMO.  

An important property of the ethene molecule, and alkenes in general is the existence of a high 

barrier to rotation about the C=C which tends to hold the molecule flat.  

For the energy diagram and pictorial view of the orbitals - please see below:  



 

Molecules with triple bonds  

Ethyne:  
 For the energy diagram and pictorial view of the orbitals - please see below:  



 

A Trigonal-planar molecule/ion - CO3
2-

 (or NO3
-
 or BF3 which are isoelectronic)  

 

This is a case where the -bonding 

is usually handled with valence 

bond theory. If the three-fold axis 

of the molecule/ion is considered 

the z axis, the -bond framework 

involves hybridizing the carbon 2s 

2px and 2py orbitals (sp
2
) and using 

them to attach the oxygens by a 2p 

orbital lying in the molcular plane. This accounts for 6 of the valence electrons.  

 The -bonding molecular orbitals are formed from the carbon and three oxygen 2pz orbitals and 

there will be six more electrons to accomodate.  

 Therefore:  

  The central atom is carbon and the ligands are oxygen.  

   



  The atomic orbitals used for the -bonding system only are shown under C and 2O&macr;, O 

in the energy level diagram below (f). The oxygen p-orbitals lie at a lower energy than those of 

carbon because oxygen is more electronegative.The three oxygen 2pz orbitals must form three 

linear combinations:  

1 = 1/32pzOa + 1/32pzOb + 1/32pzOc  

 2 = 1/22pzOb - 1/22pzOc         (no contribution from OA)  

 3 = 2pzOa - 1/62pzOb - 1/62pzOc  

 
   

   

  The energy level that these combinations would have is shown below 2O&macr;, O (combos) 

in the figure below.  

  The carbon 2pz orbital is of the correct symmetry to combine with 1.  

1 = 1/2(1 + 2pzC)      and      4 = 1/2(1 - 2pzC)  

This is the only combination involving the carbon so 2 and 3 remain non-bonding relabelled 

as 2 and 3.  

 
   



The resulting molecular orbitals are shown under CO3
2-

 on the energy level diagram below.  

 
   

The 6 electrons occupy 1, 2 and 3 as shown in the energy level diagram. The only bonding -

orbital, 1 contains 2 electrons spread over 4 centres involved in 3 C-O connections. The non-

bonding 2 and 3 orbitals have no contribution. Therefore, the bond order for each carbon - 

oxygen connection is 1/3. Do not forget the -bonds which were not included in this scheme.  

Conjugated and aromatic molecules 

 bonds in close proximity will often interact. Some of the delocalized molecular orbitals that 

result will be stabilized, while others will be destabilized. The individual combinations may be 

polarized, providing an increase in wave function amplitude on some centers at the expense of a 

decrease in amplitude on others. This gives rise to the possibility of more varied reactivity 

patterns than are observed for simple alkenes.  

 Aromatic molecules exhibit a wide range of reactivity patterns toward both electron rich and 

electron deficient species. These mainly depend on the structures and energies of the frontier -

type molecular orbitals, the HOMO and LUMO. Except for non-bonded lone pairs, the  

framework plays little role in the overall reactivity.  

trans-1,3-Butadiene:  

 The energies of the -molecular orbitals of conjugated molecules like butadiene, (see below) - 

occur in pairs, with their energies equal to (±x), where  and  are constants. For each 

bonding orbital of and energy -x there is a corresponding antibonding orbital of energy +x. 

The -molecular orbitals are extended over the whole molecule.  

For butadiene, the  manifold contains four electrons, leading to an electronic configuration of 

1
2
2

2
.  

For the energy diagram and pictorial view of the -molecular orbitals - please see below:  



 

Allyl radical  

 The radicals allyl:  

 

and pentadienyl:  

 

have the same arrangement of -orbitals, (ie. the occur in pairs of energy ±x), but because 

there is an odd number of carbon atoms in the conjugate chain, there must be a non-bonding 

orbital with energy x=0. Also, because of the pairing properties of the -molecular orbitals of 

conjugated chains, there will be a node at every alternate carbon atom in the non-bonding orbital. 

This is important for the unpaired electron of allyl, which will occupy this non-bonding orbital. 

If an electron is added to the allyl radical to form the anion, the negative charge will appear at the 

terminal carbon atoms. If the unpaired electron is removed forming the cation, the resulting 

positive charge is also spread over the termial carbon atoms.  

There are three -molecular orbitals for allyl, the 1 is bonding, the 2 orbital is non-bonding and 

the 3 is anti-bonding. In the neutral allyl species - there are a total of seventeen valence 

electrons - of which three fill the -orbital manifold. A pictorial representation of the energy 

diagram for the neutral, cationic and anionic allyl species are shown below - (orbitals are shown 

only for the cationic species):  



 

In the pentadienyl anion, the negative charge is centred on the carbon atoms in the 1,3 and 5 

position - similarly with the positive charge for the cation.  

These ions are represented in resonance theory as two or three canonical forms:  

   

   

 

The delocalisation of -electrons is associated with a lowering of the orbital energy. Therefore 

the total energy of the occupied -orbitals of butadiene is lower in energy then two isolated 

ethene-type double bonds.  

 

Bonding in benzene  

From the above diagram it can be seen that the lowest lying orbital, 1, the orbital coefficients 

are such that the bonding charachter between each pair of adjacent carbon atoms is equal. In 2 

bonding only occurs between atoms C2 and C3 and between C5 and C6 since the coefficients on 

C1 and C4 are zero. In 3, C1, which is bonded to C2 and C6 and C4 is bonded to C3 and C5, there 

are anti-bonding interactions between C2 and C3 and between C5 and C6. Therefore if we 

consider the pair of orbitals 2 and 3 the contribution to the C-C  bonding is equal for each 

bond. Since there are three occupied bonding orbitals and six CC linkages - the  bond order is 



1
/2. This description is in accord with the two resonating mesomeric forms (or Kekulé structures 

in a) below in which single and double bond characters alternate around the ring. 

Conventionally, the diagram in b) is used to show that the six electrons are delocalized around 

the ring:  

 
C7H7

+
 (tropyllium) and C8H8

2+
  

 Do them yourself!  

The molecular orbital theory of solids  

Metallic Bonding  

The third major type of chemical bond is the bond between two metal atoms.  Metals lose 

electrons and cannot normally accept them.  This means that, in a metallic bond, there are no 

atoms to accept the electrons.  Instead, the electrons are given up to a "sea" of electrons that 

surrounds the metal atoms.  In a way, this is similar to ionic bonding, except that the "ions" are 

electrons.  The attraction between the electrons and the metal ions keeps the metal together.  

The metals are the most numerous of   the elements. About 80 of the 100 or  so elements are 

metals. You know  from your own experience something about how metallic atoms bond  

together. You know that metals have substance and are not easily torn apart. They are ductile and 

malleable. That means they can be drawn into shapes, like the wire for this paper clip, and their 

shape can be changed.  They conduct heat and electricity. They can be mixed to form alloys.How 

is it that metallic bonding allows metals to do all these things?  

   The nature of metals and metallic atoms is that they have loosely held electrons that can be 

taken away fairly easily. Let's use this idea to create a model of metallic bonding to help us 

explain these properties. I will use potassium as an example. Its valence electron can be 

represented by a dot. When packed in a cluster it would look  like this (also in example 31 in 

your workbook). The valence electron is only loosely held and can move to the next atom fairly 

easily. Each atom has a valence electron nearby but who knows which one belongs to which 

atom. It doesn't matter as long as there is one nearby.  

Metals are held together by delocalized bonds formed from the atomic orbitals of all the atoms in 

the lattice. The orbitals spread over many atoms and blend into a band of  molecular orbitals. The 

range of energies of these orbitals are closely spaced. The band is composed of as many levels as 

there are contributing atomic orbitals and each level can hold electrons of opposite spin. The idea 

that the molecular orbitals of the band of energy levels are spread or delocalized over the atoms 

of the piece of metal accounts for bonding  in metallic solids. This theory of metallic bonding is 

called the band theory. The band is  split into two regions, the upper portion being the empty 

levels or the antibonding and the  lower portion is the filled levels or the bonding orbitals. In a 

metal the band of energy  levels is only partly filled. The highest filled level right before going to 

the empty level is  called the Fermi level. The trend of melting points of the transition metals is 

based on the electrons in the metal.  

Bonding Models for Metals  

Molecular orbital bands  



Band Theory of Bonding in Solids  

Bonding in solids such as metals, insulators and semiconductors may be understood most 

effectively by an expansion of simple MO theory to assemblidges of scores of atoms. If we 

recall, in simple MO theory we assumed that atomic orbitals on two atoms could come together 

to form bonding and antibonding orbitals.  

If we bring three atoms together we can create a string of atoms with bonding that connects all 

three. Here we have a bonding orbital, an antibonding orbital, and a curious critter called a 

nonbonding orbital. Essentially a nonbonding orbital is an orbital that neither increases nor 

decreases the net bonding in the molecule. The important feature here is that three atomic 

orbitals in must give three molecular orbitals out. The total number of orbitals must remain 

constant.  

Now let's expand these idea by considering combinations of four and ten atoms. As shown 

below, four atoms (four atomic orbitals) will give four molecular orbitals, two bonding and two 

antibonding. Notice that the two bonding (and two antibonding) orbitals are not exactly the same 

energy. The lower bonding orbital is slightly more bonding than the other (and one antibonding 

orbital is slightly more antibinding than the other). For the ten atoms we'd get a set of five 

bonding and five antibonding orbitals, each slightly different in energy.  



 



 
If we now jump to a huge number of atoms, n, where n is perhaps as big as Avogadro's number, 

we can see that we're going to have a nhge number of bonding and antibonding orbitals. These 

orbitals will be so close together in energy that they begin to blur creating bands of bonding and 

bands of antibonding orbitals. It is the existance of these bands of orbitals that underlie our 

understanding of the properties of solids.  

Notice, by the way, that there is some point at which the properties of an assemblidge of atoms 

makes a transition from separate discrete orbitals (and hence quantum properties like atoms), to 

bands of orbitals. The technology built upon tiny clusters called nanodots in which groups of 

atoms with perhaps twenty atoms acts like a quantum object is built upon this concept. By the 

time one has even a tiny cluster of atoms such as the submicron objects in a computer chip, the 

properties are best described by band theory.  



MO Theory of Solids. Consider a linear chain of n identical atoms, each bringing in a valence s 

orbital for MO formation. If n = 2, 2 MOs are formed, one bonding and one antibonding. If n = 

3, we obtain 3 MOs, bonding, nonbonding, and antibonding. If we run n right up to Avogadro's 

number, we expect to obtain No MOs, ranging from fully bonding (+++++...) to fully 

antibonding (+-+-+-...), with a whole bunch of other MOs between these extremes. This is shown 

in Figure MO-20. The energy spacing between lowest and highest MOs is determined primarily 

by the overlap between neighboring atoms, so will stay finite even though the number of atoms 

in the  

chain reaches toward the infinite! We thus have a huge number of MOs crammed into a finite 

energy interval. They will be so close together in energy that they will form, for all practical 

purposes, a continuous band of energy levels. For this reason the MO theory of solids is often 

called Band Theory. A very important result of this treatment is that each of the MOs in the band 

is delocalized over all of the atoms in the chain.  

The same ideas apply to a 3-dimensional, close-packed aggregate of atoms. A band of MOs will 

be formed from each type of valence AO on the atoms. Thus we obtain an s band, a p band, a d 

band, and so on, as shown in Figure MO-20. All of the MOs are delocalized over all of the atoms 

in the aggregate, so electrons in them can be considered to be everywhere at once! The highest 

filled band of MOs is called the valence band; the lowest unfilled band is called the conduction 

band; and the energy separation between the top of the valence band and the bottom of the 

conduction band is called the band gap. A partially filled band is simultaneously the valence  

band and the conduction band, so in this case the band gap is essentially zero.  

Now let's apply this picture to understand the electronic nature of the various classes of materials 

given above.  

A conductor (which is usually a metal) is a solid with a partially full band, as shown in the 

Figure. An electron in the highest occupied MO is easily promoted to the next higher empty 

delocalized MO, where it is then free to roam over the whole solid lattice under the influence of 

an applied electric field; i.e., the solid conducts electricity due to this facile electron movement. 

The high reflectivity of metals is also due to the availability of a proliferation of empty MOs 

above the HOMO. Electrons in the filled MOs of the partially-filled band can absorb and then re-

emit light of many wavelenths in making transitions to empty MOs in the band. This gives the 

metal surface a shiny reflective appearance. An example of a conductor is Na metal. It has an s 

band consisting of N MOs, where N is the number of Na atoms in the crystal. The band contains 

N electrons  

(one from each Na atom) arrayed in N/2 pairs. These N/2 pairs go in the N/2 bonding MOs, 

which leaves N/2 antibonding MOs empty but readily accessible. Thus Na exhibits the 

characteristic properties of a metal, and is a conductor.  

An insulator is a solid with a full band and a large band gap, as shown in Figure MO-21. The 

MOs in the conduction band are so high in energy that they are not thermally populated by the 

Boltzmann distribution, and there is no conductivity at ordinary temperatures. An example of an 

insulator is solid carbon in the diamond modification. Diamond consists of a covalently bonded 

network of carbon atoms (a fcc array of C atoms with more C atoms in half the tetrahedral 

holes), constructed from sp3 hybrid orbitals. N carbon atoms contribute 4N sp3 hybrids, which 

overlap strongly to give 2N bonding MOs and 2N antibonding MOs which are separated in 

energy by 5.47 eV from the bonding MOs. The 4N electrons exactly fill the band of bonding 

MOs. The antibonding band is not thermally accessible, so diamond does not conduct.  



3.15 Semiconduction  
A semiconductor is a solid with a full band and a small band gap, as shown in the Figure. There 

is a small thermal population of the conduction band at normal temperature, hence a small 

conductivity. For example, silicon has a diamond modification similar to that of carbon, but a 

band gap of only 1.12 eV, due to poorer overlap of the sp
3
 hybrids of the larger Si atoms. Since 

the antibonding band will be occupied to a small extent via the Boltzmann distribution, Si 

exhibits a small conductivity at room T.  

The group 4A elements, which have a number of valence electrons equal to twice the number of 

MOs in the bonding band, are uniquely structured to show semiconductivity. The elements C 

through Sn all exhibit a diamondlike crystal form, but with a band gap which decreases in 

magnitude for the larger atoms as orbital overlap becomes weaker. The trend in band gap down 

family 14 is shown below:  

      Element              Band Gap  

      C                           5.47  

      Si                          1.12  

      Ge                         0.66  

      Sn                         0  

Thus Si and Ge are semiconductors at room T, and Sn is a conductor. Pure compounds which are 

electronically analogous to the group 14 elements are also semiconductors. These include the 

compounds boron nitride, BN, and gallium arsenide, GaAs. Note that these compounds contain 

one element from group 13 and one element from group 15, in a 1:1 stoichiometric ratio. They 

thus have exactly the same number of valence electrons as a group 14 element, and will arrange 

these electrons in a group-14 type band structure. They are often called 3-5 compounds, to 

indicate that they consist of elements taken from groups 13 and 15. Similarly, 2-6 compounds 

such as ZnS and CdS (both of which have the zincblende structure, which is analogous to the 

diamond structure) function as semiconductors. Generally, band gaps vary with position in the 

periodic table, but tend to decrease with increasing MW of the semiconductor.  

The temperature dependence of conductivity is readily understood within the framework of band 

theory. For a conductor, promotion of electrons is facile within a band at any T. However, As T 

increases, vibrational motions of the metal atoms in the lattice increases and interferes with the 

motion of the conducting electrons. The result is a decrease in conductivity as T increases. For a 

semiconductor, an increase in T causes an exponential increase in the population of the 

conduction band, because of the Boltzmann distribution. Therefore the conductivity of 

semiconductors increases dramatically with T. Because an insulator is actually a semiconductor 

with a large band gap, the conductivity of an insulator should also increase markedly if the 

temperature is made  

high enough.  

         Because of the very large number of atoms that interact in a solid material, the energy 

levels are so closely spaced that they form bands. The highest energy filled band, which is 

analogous to the highest occupied molecular orbital in a molecule (HOMO), is called the valence 

band. The next higher band, which is analogous to the lowest unoccupied molecular orbital 

(LUMO) in a molecule, is called the conduction band. The energy separation between these 

bands is called the energy gap, Eg.  



Idealized representation of energy bands and gaps  

 

The filling of these bands and the size of the energy gap determine if a material is a conductor (a 

metal), a semiconductor, or an insulator. In metals there is no energy gap between filled and 

unfilled energy levels. A significant number of electrons are thermally excited into empty levels, 

creating holes in the filled band. The electrons in a conduction band and the holes in a valence 

band can move throughout the material, allowing it to easily conduct electricity. In 

semiconductors Eg is small, but large enough so that a fairly small number of electrons are in the 

conduction band due to thermal energy, and these materials conduct poorly. In insulators Eg is 

large so that electrons are not promoted to the conduction band due to thermal energy, and these 

materials do not conduct electricity.  

Three categories of materials may be easily understood by the energy gap between the bonding 

bands and the antibonding bands. If there is a large gap in energy, the material is called an 

insulator. If the gap is finite, but small, then the material is a semiconductor, and if there is 

effectively no gap between the bands, the materials are called conductors. These properties arise 

because electrons that enter the antibonding band are free to move about the crystal. Such 

behavior is associated with electrical conduction. To give you an idea of the energies involved, 

the band gap in diamond is 502 kJ/mol, while that in Si is 100 kJ/mol and that in Ge is 67 

kJ/mol. Diamond is an insulator while the other two materials are semiconductors.  



 

3.16 Superconduction  

The Discovery of Superconduction 

Before the discovery of superconduction, it was already known that cooling a metal increased its 

conductivity - due to decreased electron-phonon interactions (detailed in the Theory section).  

After the 'discovery' of liquified helium, allowing objects to be cooled to within 4K of absolute 

zero, it was discovered (by Onnes, 1911) that when mercury was cooled to 4.15K, its resistance 

suddenly (and unexpectedly) dropped to zero (i.e. it went superconducting).  

   

 

Left: When Onnes 

cooled mercury to 

4.15K, the resistivity 

suddenly dropped to 

zero 

In 1913, it was discovered that lead went superconducting at 7.2K. It was then 17 years until 

niobium was found to superconduct at a higher temperature of 9.2K.  

Onnes also observed that normal conduction characteristics could be restored in the presence of a 

strong magnetic field.  
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The Meissner Effect 

It was not until 1933 that physicists became aware of the other property of superconductors - 

perfect diamagnetism. This was when Meissner and Oschenfeld discovered that a 

superconducting material cooled below its critical temperature in a magnetic field excluded the 

magnetic flux. This effect has now become known as the Meissner effect (- you can see a 

QuickTime video of this in action from this link).  

   

 

Above: The Meissner effect - a superconducting sphere in a constant 

applied magnetic field excludes the magnetic flux 

The limit of external magnetic field strength at which a superconductor can exclude the field is 

known as the critical field strength, Bc.  

Type II superconductors have two critical field strengths; Bc1, above which the field penetrates 

into the superconductor, and Bc2, above which superconductivity is destroyed, as per Bc for Type 

I superconductors.  

Theory of Superconduction 

Fritz and Heinz London proposed equations to explain the Meissner effect and predict how far a 

magnetic field could penetrate into a superconductor, but it was not until 1950 that any great 

theoretical progression was made, with Ginzburg-Landau theory, which explained 

superconductivity and provided derivation for the London equations.  

Ginzburg-Landau theory has been largely superseded by BCS theory, which deals with 

superconduction in a more microscopic manner.  

BCS theory was proposed by J. Bardeen, L. Cooper and J. R. Schrieffer in 1957 - it is dealt with 

in the Theory section. BCS suggests the formation of so-called 'Cooper pairs', and correlates 

Ginzburg-Landau and London predictions well.  
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Cooper  pair formation - electron-phonon interaction: the  electron is attracted to the positive 

charge density (red  glow) created by the first electron distorting the lattice around  itself.  

However, BCS theory does not account well for high temperature superconduction, which is still 

not fully understood.  

High Temperature Superconduction 

The highest known temperature at which a material went superconducting increased slowly as 

scientists found new materials with higher values of Tc, but it was in 1986 that a Ba-La-Cu-O 

system was found to superconduct at 35K - by far the highest then found. This was interesting as 

BCS theory had predicted a theoretical limit of about 30-40K to Tc (due to thermal vibrations).  

Soon, materials were found that would superconduct above 77K - the melting point of liquid 

nitrogen, which is far safer and much less expensive than liquid helium as a refrigerant. 

Although high temperature superconductors are more useful above 77K, the term technically 

refers to those materials that superconduct above 30-40K.  

In 1994, the record for Tc was 164K, under 30GPa of pressure, for HgBa2Ca2Cu3O8+x.  

Recommended Questions from Shriver and Atkins:  

   

        "Exercises" 

3.1 - 3.5 These are important. 

3.6 Important. Ignore the bit about the vapour phase. 

3.7 - 3.11 
Aklthough not explicitly covered in the course, you should be 

able to tackle these. 

3.12, 3.13 These are important. 

3.14 
Important. Assume S2 and Cl2 are like their equivalents in the 

first row. 

3.15 Important. 

3.16 - 3.28 These are beyond the scope of this course. 

        "Problems" 

3.1 You should be able to answer this. 

3.2 
You would be able to do this, but in is not explicitly covered in 

the course. 

3.3 You should be able to do this by adding on top of to the 1s - 1s 
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interaction, the diagram for the homonuclear diatomic 

molecules of the first row (which use 2s and 2p interactions). 

3.4 - 3.15 These are beyond the scope of this course. 

Some Answers and Questions  

1. What holds molecules together? 

2. What are the electrons doing in the molecule? 

3. What insight do these considerations give concerning the chemical and physical 

properties of the molecule? 

4. Can we predict existence and structures of molecules? 

The first objective is to derive molecular orbitals into which we can place all the electrons in the 

molecule in much the same way as we do for atoms. (Using the Aufbau Principle.) To obtain 

these molecular orbitals, we use a method called the linear combination of atomic orbitals 

(LCAO). As the name implies, the molecular orbitals are made by adding or subtracting the 

atomic orbitals. The simplest example is obtained by considering the hydrogen molecule, H2, 

which we write as HA-HB, using the subscripts A and B to label the two atoms. LCAO theory 

states that one of the molecular orbitals can be written as:  

1 = c.1sA + d.1sB 

The constants c and d are weighting constants indicating the relative amounts of each atomic 

orbital that will be used. For H2, where the two hydogen atoms are equivalent, c = d, and we can 

replace them by a single "normalizing" constant N:  

1 = N.(1sA + 1sB) = (1/2).(1sA + 1sB)...(1) 

(If the probability of finding the electron in such an orbital somewhere in all space is to be equal 

to 1, N = 1/2.)  

So far we have done nothing difficult, but simply assumed that equation 1 represents our MO. 

Use the applet to have a look at what this orbital looks like. You can adjust the distance between 

the nuclei to see what happens as the atomic orbital ovelap more and more. Figure 2 gives a 

rather crude picture of what you should see.  

   

   

 

 Figure 2 

http://alcor.concordia.ca/~birdp/D4_app1.html


Since 1sA and 1sB are positive everywhere, their sum must be too. Just as for the atomic 

orbitals, the value of 
2
 gives the probability of finding the electron in a small region, or the 

electron density at a point. This particular orbital is referred to as a bonding molecular orbital for 

reasons that will shortly be explained.  

 There is another linear combination that we should have considered according to LCAO theory:  

   

   

2 = (1/2).(1sA-1sB) ..................(2) 

Use the applet to have a look at what this combination looks like. Figure 3 shows a crude 

representation of what you should see. This combination is referred to as antibonding. Whenever 

we combine two atomic orbitals in a way which produces a change in the sign of  between the 

two component atomic orbitals, anti-bonding results.  

   

   

 

 Figure 3 

We can better understand the difference between 1 and 2 by examining the electron density or 

probability. For the bonding combination this is given by:  

   

   

1
2
 = &frac12;(1sA + 1sB)

2
 = &frac12;(1sA

2
 + 1sB

2
 + 2.1sA1sB) ..(3) 

If we compare this to the electron density contribution from two individual hydrogen atoms, 

&frac12;(1sA
2
 + 1sB

2
), it is obvious that the electron density has been increased by a amount 

1sA1sB. This effect, which accounts for the bonding because the negatively charged electrons 

hold the positively charged nuclei together, is illustrated in Figure 4.  
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 Figure 4 

Question 1.  The probability plot for 2
2
 is also shown in Figure 4. What would be its equation? 

(The equivalent of equation 3) What do you notice about the electron density between the nuclei 

as compared to two individual hydrogen atoms simply placed side by side?  

Further insight into the bonding of HA and HB can be obtained by considering the energies of the 

electrons in 1 and 2 compared to their energies in the non-interacting atoms. This can be done 

by plugging the LCAO wave functions for the molecule back into the appropriate Scrödinger 

equation (just as it can be done for the individual atoms using the atomic wave functions). The 

results are shown in Figure 5, where 1 and 2 are sometimes renamed (1s) and *(1s), 

respectively, to indicate the type of molecular orbital and their parentage.  

   

   

 

 Figure 5 



These molecular orbitals are useful for any molecule, or molecule-ion, using only 1s orbitals for 

bonding. Several possibilities are: H2
+
, H2, H2

-
, H2

2-
, He2

+
 and He2. The positive molecule-ions 

are unstable, but have been detected in the gas phase under high energy conditions. The negative 

molecule-ions and He2 have not been observed.  

 Question 2. Using Figure 5, comment on the observations about the stability of the diatomic 

species listed above. (Would you expect all the negative molecule-ions to be unstable? Are there 

other species not listed which might be observed? Your answer should make reference to the 

electronic configuration and bond orders in these species  

Second Row : Homonuclear Diatomics  

 Second row atoms have 2s and 2p orbitals available for use in bonding. As in the case of two 

atoms with 1s orbitals interacting, two atoms with 2s orbitals interacting lead to two molecular 

orbitals called (2s) and *(2s).  

The symbol  is used when the molecular orbital has no nodal plane which contains both nuclei. 

For the bonding combination, there is only one region of high electon density between the two 

nuclei. If there is a single nodal plane containing both nuclei, the orbital is of type . In this case, 

the bonding combination will have two regions of high electron density separated by the node. 

There are rare cases in certain transition metal compounds, where two nodes per molecular 

orbital contain both nuclei. These are designated  orbitals.  

 In valence bond theory terms, a single bond would have only a  symmetry bond. A double bond 

consists of a  and a  bond, a triple bond would have a  and two  bonds, and the esoteric 

quadruple bond has one , two  and one  combination. In a multiple bond, the various orbitals 

co-exist in the same region of space between the nuclei. Do not mistake the two regions of 

overlap of a -bonding orbital for a double bond!  

 Use the applet to display the molecular orbitals derived from the 2s atomic orbitals on two 

atoms.  

 Question 3.  Prepare sketches of the (2s) and *(2s) orbitals similar to Figures 2 and 3. Do not 

attempt to copy all shading; just show all the nodes and the phase (sign) of . Do they differ at 

all from figures 2 and 3?  

Next use the computer program to display the overlap of two 2px orbitals. (The x axis is taken as 

the internuclear axis by the computer program.)  

 Question 4. Prepare crude sketches of the resulting orbitals. Which combination, the sum or the 

difference, corresponds to the bonding combination this time? What would be the names for 

these orbitals?  

Now use the applet to examine the molecular orbitals that result from the linear combinations of 

the 2py orbitals. (Note that the results would be the same for the combinations of 2pz orbitals, 

which, if you have time you can check by varying the value of z.)  
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 Question 5.  Once again prepare simplified sketches of what you see. Give the proper labels for 

the two combinations, including the * to indicate which is the antibonding orbital.  

At this point you should have seen all the all the molecular orbitals formed by pairs of 2s and 2p 

orbitals. We can construct an energy level diagram to illustrate the relative energies of all these 

molecular orbitals and the atomic orbitals from which they are derived (Figure 6).  

   

   

 

Figure 6 

Question 6. What is the bond order in Li2 and O2?  

What homonuclear molecule-cation and molecule-anion species should have the same bond 

order as O2? Consider cases between X2
2-

 and X2
2+

 where X = Li to Ne.  

Predict which two second-row elements are unlikely to give a diatomic molecule. Does simple 

Lewis bonding theory agree with your predictions?  

Figure 6 does not quite tell the whole story. It can be refined a little by considering some other 

types of combination. Use the computer program to examine the linear combination of a 2s 

orbital on one atom with a 2px orbital on the other.  

 Question 7. Again sketch the results. There is no special way to label these combinations, but 

say if they are of type  or , and whether they are bonding or antibonding.  

Use the computer to form a combination of a 2s orbital on one atom with a 2py orbital on the 

other.  

 Question 8.  Sketch the resulting orbital. Can you classify this orbital as  or  and bonding or 

antibonding? Explain. Go back to the beginning of this section if you are not sure.  

Your answers to questions 7 and 8 should have convinced you that an LCAO of the type 
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illustrated in question 7 is a reasonable combination, but that the other combination, described in 

question 8, is not useful. (Such a combination is called nonbonding.)  

 The results of including the additional overlap of 2s with 2p orbitals is shown in Figure 7. The 

main changes are shown in red.  

 There is also a little contribution from the 2s orbitals to the most antibonding molecular 

orbital (at the top of the diagram), and a little contribution by the 2p orbitals to the most 

bonding molecular orbital (at the bottom). 

 The main changes are that the orbital which was labelled (2p) and was below the (2p) 

levels is now shown above the (2P) and is now identified as *(2s,2p) while what was 

*(2s) has become (2s,2p).. 

The difference does not affect our predictions for any of the stable homonuclear diatomic 

molecules, but it does slightly change our predictions for some of the more exotic species such as 

B2, which can be detected in boron vapour.  

   

   

 

Figure 7 

In actual fact the extent of the 2s - 2p interaction changes from Li2 to F2, becoming gradually less 

important, so that we should use the "improved" diagram (Figure 7) for Li2 to N2 and Figure 6 

for O2 F2 (and cations of Ne2). Figure 8 below shows what happens to the molecular orbitals as 

we cross the period.  

   

   



 

Figure 8 

Question 9. What is the difference for B2?  

Question 10.  
 Go back and briefly answer, in the context of the homonuclear diatomic molecules, the four 

questions which were posed at the beginning of this lab.  

 Feel free to play with the applet to examine some of the other combinations of atomic orbitals 

that are possible. Because the projection direction is down the z-axis certain combinations cannot 

be displayed. 
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